Metamath Proof Explorer


Theorem onslt

Description: Less-than is the same as birthday comparison over surreal ordinals. (Contributed by Scott Fenton, 7-Nov-2025)

Ref Expression
Assertion onslt
|- ( ( A e. On_s /\ B e. On_s ) -> ( A  ( bday ` A ) e. ( bday ` B ) ) )

Proof

Step Hyp Ref Expression
1 onsno
 |-  ( B e. On_s -> B e. No )
2 onnolt
 |-  ( ( A e. On_s /\ B e. No /\ A  ( bday ` A ) e. ( bday ` B ) )
3 2 3expia
 |-  ( ( A e. On_s /\ B e. No ) -> ( A  ( bday ` A ) e. ( bday ` B ) ) )
4 1 3 sylan2
 |-  ( ( A e. On_s /\ B e. On_s ) -> ( A  ( bday ` A ) e. ( bday ` B ) ) )
5 bdayelon
 |-  ( bday ` B ) e. On
6 onsno
 |-  ( A e. On_s -> A e. No )
7 6 adantr
 |-  ( ( A e. On_s /\ B e. On_s ) -> A e. No )
8 oldbday
 |-  ( ( ( bday ` B ) e. On /\ A e. No ) -> ( A e. ( _Old ` ( bday ` B ) ) <-> ( bday ` A ) e. ( bday ` B ) ) )
9 5 7 8 sylancr
 |-  ( ( A e. On_s /\ B e. On_s ) -> ( A e. ( _Old ` ( bday ` B ) ) <-> ( bday ` A ) e. ( bday ` B ) ) )
10 onsleft
 |-  ( B e. On_s -> ( _Old ` ( bday ` B ) ) = ( _Left ` B ) )
11 10 eleq2d
 |-  ( B e. On_s -> ( A e. ( _Old ` ( bday ` B ) ) <-> A e. ( _Left ` B ) ) )
12 11 adantl
 |-  ( ( A e. On_s /\ B e. On_s ) -> ( A e. ( _Old ` ( bday ` B ) ) <-> A e. ( _Left ` B ) ) )
13 9 12 bitr3d
 |-  ( ( A e. On_s /\ B e. On_s ) -> ( ( bday ` A ) e. ( bday ` B ) <-> A e. ( _Left ` B ) ) )
14 leftlt
 |-  ( A e. ( _Left ` B ) -> A 
15 13 14 biimtrdi
 |-  ( ( A e. On_s /\ B e. On_s ) -> ( ( bday ` A ) e. ( bday ` B ) -> A 
16 4 15 impbid
 |-  ( ( A e. On_s /\ B e. On_s ) -> ( A  ( bday ` A ) e. ( bday ` B ) ) )