| Step |
Hyp |
Ref |
Expression |
| 1 |
|
onsno |
|- ( B e. On_s -> B e. No ) |
| 2 |
|
onnolt |
|- ( ( A e. On_s /\ B e. No /\ A ( bday ` A ) e. ( bday ` B ) ) |
| 3 |
2
|
3expia |
|- ( ( A e. On_s /\ B e. No ) -> ( A ( bday ` A ) e. ( bday ` B ) ) ) |
| 4 |
1 3
|
sylan2 |
|- ( ( A e. On_s /\ B e. On_s ) -> ( A ( bday ` A ) e. ( bday ` B ) ) ) |
| 5 |
|
bdayelon |
|- ( bday ` B ) e. On |
| 6 |
|
onsno |
|- ( A e. On_s -> A e. No ) |
| 7 |
6
|
adantr |
|- ( ( A e. On_s /\ B e. On_s ) -> A e. No ) |
| 8 |
|
oldbday |
|- ( ( ( bday ` B ) e. On /\ A e. No ) -> ( A e. ( _Old ` ( bday ` B ) ) <-> ( bday ` A ) e. ( bday ` B ) ) ) |
| 9 |
5 7 8
|
sylancr |
|- ( ( A e. On_s /\ B e. On_s ) -> ( A e. ( _Old ` ( bday ` B ) ) <-> ( bday ` A ) e. ( bday ` B ) ) ) |
| 10 |
|
onsleft |
|- ( B e. On_s -> ( _Old ` ( bday ` B ) ) = ( _Left ` B ) ) |
| 11 |
10
|
eleq2d |
|- ( B e. On_s -> ( A e. ( _Old ` ( bday ` B ) ) <-> A e. ( _Left ` B ) ) ) |
| 12 |
11
|
adantl |
|- ( ( A e. On_s /\ B e. On_s ) -> ( A e. ( _Old ` ( bday ` B ) ) <-> A e. ( _Left ` B ) ) ) |
| 13 |
9 12
|
bitr3d |
|- ( ( A e. On_s /\ B e. On_s ) -> ( ( bday ` A ) e. ( bday ` B ) <-> A e. ( _Left ` B ) ) ) |
| 14 |
|
leftlt |
|- ( A e. ( _Left ` B ) -> A |
| 15 |
13 14
|
biimtrdi |
|- ( ( A e. On_s /\ B e. On_s ) -> ( ( bday ` A ) e. ( bday ` B ) -> A |
| 16 |
4 15
|
impbid |
|- ( ( A e. On_s /\ B e. On_s ) -> ( A ( bday ` A ) e. ( bday ` B ) ) ) |