| Step |
Hyp |
Ref |
Expression |
| 1 |
|
onsno |
⊢ ( 𝐵 ∈ Ons → 𝐵 ∈ No ) |
| 2 |
|
onnolt |
⊢ ( ( 𝐴 ∈ Ons ∧ 𝐵 ∈ No ∧ 𝐴 <s 𝐵 ) → ( bday ‘ 𝐴 ) ∈ ( bday ‘ 𝐵 ) ) |
| 3 |
2
|
3expia |
⊢ ( ( 𝐴 ∈ Ons ∧ 𝐵 ∈ No ) → ( 𝐴 <s 𝐵 → ( bday ‘ 𝐴 ) ∈ ( bday ‘ 𝐵 ) ) ) |
| 4 |
1 3
|
sylan2 |
⊢ ( ( 𝐴 ∈ Ons ∧ 𝐵 ∈ Ons ) → ( 𝐴 <s 𝐵 → ( bday ‘ 𝐴 ) ∈ ( bday ‘ 𝐵 ) ) ) |
| 5 |
|
bdayelon |
⊢ ( bday ‘ 𝐵 ) ∈ On |
| 6 |
|
onsno |
⊢ ( 𝐴 ∈ Ons → 𝐴 ∈ No ) |
| 7 |
6
|
adantr |
⊢ ( ( 𝐴 ∈ Ons ∧ 𝐵 ∈ Ons ) → 𝐴 ∈ No ) |
| 8 |
|
oldbday |
⊢ ( ( ( bday ‘ 𝐵 ) ∈ On ∧ 𝐴 ∈ No ) → ( 𝐴 ∈ ( O ‘ ( bday ‘ 𝐵 ) ) ↔ ( bday ‘ 𝐴 ) ∈ ( bday ‘ 𝐵 ) ) ) |
| 9 |
5 7 8
|
sylancr |
⊢ ( ( 𝐴 ∈ Ons ∧ 𝐵 ∈ Ons ) → ( 𝐴 ∈ ( O ‘ ( bday ‘ 𝐵 ) ) ↔ ( bday ‘ 𝐴 ) ∈ ( bday ‘ 𝐵 ) ) ) |
| 10 |
|
onsleft |
⊢ ( 𝐵 ∈ Ons → ( O ‘ ( bday ‘ 𝐵 ) ) = ( L ‘ 𝐵 ) ) |
| 11 |
10
|
eleq2d |
⊢ ( 𝐵 ∈ Ons → ( 𝐴 ∈ ( O ‘ ( bday ‘ 𝐵 ) ) ↔ 𝐴 ∈ ( L ‘ 𝐵 ) ) ) |
| 12 |
11
|
adantl |
⊢ ( ( 𝐴 ∈ Ons ∧ 𝐵 ∈ Ons ) → ( 𝐴 ∈ ( O ‘ ( bday ‘ 𝐵 ) ) ↔ 𝐴 ∈ ( L ‘ 𝐵 ) ) ) |
| 13 |
9 12
|
bitr3d |
⊢ ( ( 𝐴 ∈ Ons ∧ 𝐵 ∈ Ons ) → ( ( bday ‘ 𝐴 ) ∈ ( bday ‘ 𝐵 ) ↔ 𝐴 ∈ ( L ‘ 𝐵 ) ) ) |
| 14 |
|
leftlt |
⊢ ( 𝐴 ∈ ( L ‘ 𝐵 ) → 𝐴 <s 𝐵 ) |
| 15 |
13 14
|
biimtrdi |
⊢ ( ( 𝐴 ∈ Ons ∧ 𝐵 ∈ Ons ) → ( ( bday ‘ 𝐴 ) ∈ ( bday ‘ 𝐵 ) → 𝐴 <s 𝐵 ) ) |
| 16 |
4 15
|
impbid |
⊢ ( ( 𝐴 ∈ Ons ∧ 𝐵 ∈ Ons ) → ( 𝐴 <s 𝐵 ↔ ( bday ‘ 𝐴 ) ∈ ( bday ‘ 𝐵 ) ) ) |