Metamath Proof Explorer


Theorem onslt

Description: Less-than is the same as birthday comparison over surreal ordinals. (Contributed by Scott Fenton, 7-Nov-2025)

Ref Expression
Assertion onslt ( ( 𝐴 ∈ Ons𝐵 ∈ Ons ) → ( 𝐴 <s 𝐵 ↔ ( bday 𝐴 ) ∈ ( bday 𝐵 ) ) )

Proof

Step Hyp Ref Expression
1 onsno ( 𝐵 ∈ Ons𝐵 No )
2 onnolt ( ( 𝐴 ∈ Ons𝐵 No 𝐴 <s 𝐵 ) → ( bday 𝐴 ) ∈ ( bday 𝐵 ) )
3 2 3expia ( ( 𝐴 ∈ Ons𝐵 No ) → ( 𝐴 <s 𝐵 → ( bday 𝐴 ) ∈ ( bday 𝐵 ) ) )
4 1 3 sylan2 ( ( 𝐴 ∈ Ons𝐵 ∈ Ons ) → ( 𝐴 <s 𝐵 → ( bday 𝐴 ) ∈ ( bday 𝐵 ) ) )
5 bdayelon ( bday 𝐵 ) ∈ On
6 onsno ( 𝐴 ∈ Ons𝐴 No )
7 6 adantr ( ( 𝐴 ∈ Ons𝐵 ∈ Ons ) → 𝐴 No )
8 oldbday ( ( ( bday 𝐵 ) ∈ On ∧ 𝐴 No ) → ( 𝐴 ∈ ( O ‘ ( bday 𝐵 ) ) ↔ ( bday 𝐴 ) ∈ ( bday 𝐵 ) ) )
9 5 7 8 sylancr ( ( 𝐴 ∈ Ons𝐵 ∈ Ons ) → ( 𝐴 ∈ ( O ‘ ( bday 𝐵 ) ) ↔ ( bday 𝐴 ) ∈ ( bday 𝐵 ) ) )
10 onsleft ( 𝐵 ∈ Ons → ( O ‘ ( bday 𝐵 ) ) = ( L ‘ 𝐵 ) )
11 10 eleq2d ( 𝐵 ∈ Ons → ( 𝐴 ∈ ( O ‘ ( bday 𝐵 ) ) ↔ 𝐴 ∈ ( L ‘ 𝐵 ) ) )
12 11 adantl ( ( 𝐴 ∈ Ons𝐵 ∈ Ons ) → ( 𝐴 ∈ ( O ‘ ( bday 𝐵 ) ) ↔ 𝐴 ∈ ( L ‘ 𝐵 ) ) )
13 9 12 bitr3d ( ( 𝐴 ∈ Ons𝐵 ∈ Ons ) → ( ( bday 𝐴 ) ∈ ( bday 𝐵 ) ↔ 𝐴 ∈ ( L ‘ 𝐵 ) ) )
14 leftlt ( 𝐴 ∈ ( L ‘ 𝐵 ) → 𝐴 <s 𝐵 )
15 13 14 biimtrdi ( ( 𝐴 ∈ Ons𝐵 ∈ Ons ) → ( ( bday 𝐴 ) ∈ ( bday 𝐵 ) → 𝐴 <s 𝐵 ) )
16 4 15 impbid ( ( 𝐴 ∈ Ons𝐵 ∈ Ons ) → ( 𝐴 <s 𝐵 ↔ ( bday 𝐴 ) ∈ ( bday 𝐵 ) ) )