Metamath Proof Explorer


Theorem onnolt

Description: If a surreal ordinal is less than a given surreal, then it is simpler. (Contributed by Scott Fenton, 7-Nov-2025)

Ref Expression
Assertion onnolt ( ( 𝐴 ∈ Ons𝐵 No 𝐴 <s 𝐵 ) → ( bday 𝐴 ) ∈ ( bday 𝐵 ) )

Proof

Step Hyp Ref Expression
1 simplr ( ( ( 𝐴 ∈ Ons𝐵 No ) ∧ ( bday 𝐵 ) ∈ ( bday 𝐴 ) ) → 𝐵 No )
2 onsno ( 𝐴 ∈ Ons𝐴 No )
3 2 adantr ( ( 𝐴 ∈ Ons𝐵 No ) → 𝐴 No )
4 3 adantr ( ( ( 𝐴 ∈ Ons𝐵 No ) ∧ ( bday 𝐵 ) ∈ ( bday 𝐴 ) ) → 𝐴 No )
5 bdayelon ( bday 𝐴 ) ∈ On
6 simpr ( ( 𝐴 ∈ Ons𝐵 No ) → 𝐵 No )
7 oldbday ( ( ( bday 𝐴 ) ∈ On ∧ 𝐵 No ) → ( 𝐵 ∈ ( O ‘ ( bday 𝐴 ) ) ↔ ( bday 𝐵 ) ∈ ( bday 𝐴 ) ) )
8 5 6 7 sylancr ( ( 𝐴 ∈ Ons𝐵 No ) → ( 𝐵 ∈ ( O ‘ ( bday 𝐴 ) ) ↔ ( bday 𝐵 ) ∈ ( bday 𝐴 ) ) )
9 onsleft ( 𝐴 ∈ Ons → ( O ‘ ( bday 𝐴 ) ) = ( L ‘ 𝐴 ) )
10 9 eleq2d ( 𝐴 ∈ Ons → ( 𝐵 ∈ ( O ‘ ( bday 𝐴 ) ) ↔ 𝐵 ∈ ( L ‘ 𝐴 ) ) )
11 10 adantr ( ( 𝐴 ∈ Ons𝐵 No ) → ( 𝐵 ∈ ( O ‘ ( bday 𝐴 ) ) ↔ 𝐵 ∈ ( L ‘ 𝐴 ) ) )
12 8 11 bitr3d ( ( 𝐴 ∈ Ons𝐵 No ) → ( ( bday 𝐵 ) ∈ ( bday 𝐴 ) ↔ 𝐵 ∈ ( L ‘ 𝐴 ) ) )
13 leftlt ( 𝐵 ∈ ( L ‘ 𝐴 ) → 𝐵 <s 𝐴 )
14 12 13 biimtrdi ( ( 𝐴 ∈ Ons𝐵 No ) → ( ( bday 𝐵 ) ∈ ( bday 𝐴 ) → 𝐵 <s 𝐴 ) )
15 14 imp ( ( ( 𝐴 ∈ Ons𝐵 No ) ∧ ( bday 𝐵 ) ∈ ( bday 𝐴 ) ) → 𝐵 <s 𝐴 )
16 1 4 15 sltled ( ( ( 𝐴 ∈ Ons𝐵 No ) ∧ ( bday 𝐵 ) ∈ ( bday 𝐴 ) ) → 𝐵 ≤s 𝐴 )
17 16 ex ( ( 𝐴 ∈ Ons𝐵 No ) → ( ( bday 𝐵 ) ∈ ( bday 𝐴 ) → 𝐵 ≤s 𝐴 ) )
18 leftssold ( L ‘ 𝐵 ) ⊆ ( O ‘ ( bday 𝐵 ) )
19 fveq2 ( ( bday 𝐵 ) = ( bday 𝐴 ) → ( O ‘ ( bday 𝐵 ) ) = ( O ‘ ( bday 𝐴 ) ) )
20 19 3ad2ant3 ( ( 𝐴 ∈ Ons𝐵 No ∧ ( bday 𝐵 ) = ( bday 𝐴 ) ) → ( O ‘ ( bday 𝐵 ) ) = ( O ‘ ( bday 𝐴 ) ) )
21 9 3ad2ant1 ( ( 𝐴 ∈ Ons𝐵 No ∧ ( bday 𝐵 ) = ( bday 𝐴 ) ) → ( O ‘ ( bday 𝐴 ) ) = ( L ‘ 𝐴 ) )
22 20 21 eqtrd ( ( 𝐴 ∈ Ons𝐵 No ∧ ( bday 𝐵 ) = ( bday 𝐴 ) ) → ( O ‘ ( bday 𝐵 ) ) = ( L ‘ 𝐴 ) )
23 18 22 sseqtrid ( ( 𝐴 ∈ Ons𝐵 No ∧ ( bday 𝐵 ) = ( bday 𝐴 ) ) → ( L ‘ 𝐵 ) ⊆ ( L ‘ 𝐴 ) )
24 simp2 ( ( 𝐴 ∈ Ons𝐵 No ∧ ( bday 𝐵 ) = ( bday 𝐴 ) ) → 𝐵 No )
25 2 3ad2ant1 ( ( 𝐴 ∈ Ons𝐵 No ∧ ( bday 𝐵 ) = ( bday 𝐴 ) ) → 𝐴 No )
26 simp3 ( ( 𝐴 ∈ Ons𝐵 No ∧ ( bday 𝐵 ) = ( bday 𝐴 ) ) → ( bday 𝐵 ) = ( bday 𝐴 ) )
27 slelss ( ( 𝐵 No 𝐴 No ∧ ( bday 𝐵 ) = ( bday 𝐴 ) ) → ( 𝐵 ≤s 𝐴 ↔ ( L ‘ 𝐵 ) ⊆ ( L ‘ 𝐴 ) ) )
28 24 25 26 27 syl3anc ( ( 𝐴 ∈ Ons𝐵 No ∧ ( bday 𝐵 ) = ( bday 𝐴 ) ) → ( 𝐵 ≤s 𝐴 ↔ ( L ‘ 𝐵 ) ⊆ ( L ‘ 𝐴 ) ) )
29 23 28 mpbird ( ( 𝐴 ∈ Ons𝐵 No ∧ ( bday 𝐵 ) = ( bday 𝐴 ) ) → 𝐵 ≤s 𝐴 )
30 29 3expia ( ( 𝐴 ∈ Ons𝐵 No ) → ( ( bday 𝐵 ) = ( bday 𝐴 ) → 𝐵 ≤s 𝐴 ) )
31 17 30 jaod ( ( 𝐴 ∈ Ons𝐵 No ) → ( ( ( bday 𝐵 ) ∈ ( bday 𝐴 ) ∨ ( bday 𝐵 ) = ( bday 𝐴 ) ) → 𝐵 ≤s 𝐴 ) )
32 bdayelon ( bday 𝐵 ) ∈ On
33 32 5 onsseli ( ( bday 𝐵 ) ⊆ ( bday 𝐴 ) ↔ ( ( bday 𝐵 ) ∈ ( bday 𝐴 ) ∨ ( bday 𝐵 ) = ( bday 𝐴 ) ) )
34 ontri1 ( ( ( bday 𝐵 ) ∈ On ∧ ( bday 𝐴 ) ∈ On ) → ( ( bday 𝐵 ) ⊆ ( bday 𝐴 ) ↔ ¬ ( bday 𝐴 ) ∈ ( bday 𝐵 ) ) )
35 32 5 34 mp2an ( ( bday 𝐵 ) ⊆ ( bday 𝐴 ) ↔ ¬ ( bday 𝐴 ) ∈ ( bday 𝐵 ) )
36 33 35 bitr3i ( ( ( bday 𝐵 ) ∈ ( bday 𝐴 ) ∨ ( bday 𝐵 ) = ( bday 𝐴 ) ) ↔ ¬ ( bday 𝐴 ) ∈ ( bday 𝐵 ) )
37 36 a1i ( ( 𝐴 ∈ Ons𝐵 No ) → ( ( ( bday 𝐵 ) ∈ ( bday 𝐴 ) ∨ ( bday 𝐵 ) = ( bday 𝐴 ) ) ↔ ¬ ( bday 𝐴 ) ∈ ( bday 𝐵 ) ) )
38 slenlt ( ( 𝐵 No 𝐴 No ) → ( 𝐵 ≤s 𝐴 ↔ ¬ 𝐴 <s 𝐵 ) )
39 6 3 38 syl2anc ( ( 𝐴 ∈ Ons𝐵 No ) → ( 𝐵 ≤s 𝐴 ↔ ¬ 𝐴 <s 𝐵 ) )
40 31 37 39 3imtr3d ( ( 𝐴 ∈ Ons𝐵 No ) → ( ¬ ( bday 𝐴 ) ∈ ( bday 𝐵 ) → ¬ 𝐴 <s 𝐵 ) )
41 40 con4d ( ( 𝐴 ∈ Ons𝐵 No ) → ( 𝐴 <s 𝐵 → ( bday 𝐴 ) ∈ ( bday 𝐵 ) ) )
42 41 3impia ( ( 𝐴 ∈ Ons𝐵 No 𝐴 <s 𝐵 ) → ( bday 𝐴 ) ∈ ( bday 𝐵 ) )