| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simplr |
⊢ ( ( ( 𝐴 ∈ Ons ∧ 𝐵 ∈ No ) ∧ ( bday ‘ 𝐵 ) ∈ ( bday ‘ 𝐴 ) ) → 𝐵 ∈ No ) |
| 2 |
|
onsno |
⊢ ( 𝐴 ∈ Ons → 𝐴 ∈ No ) |
| 3 |
2
|
adantr |
⊢ ( ( 𝐴 ∈ Ons ∧ 𝐵 ∈ No ) → 𝐴 ∈ No ) |
| 4 |
3
|
adantr |
⊢ ( ( ( 𝐴 ∈ Ons ∧ 𝐵 ∈ No ) ∧ ( bday ‘ 𝐵 ) ∈ ( bday ‘ 𝐴 ) ) → 𝐴 ∈ No ) |
| 5 |
|
bdayelon |
⊢ ( bday ‘ 𝐴 ) ∈ On |
| 6 |
|
simpr |
⊢ ( ( 𝐴 ∈ Ons ∧ 𝐵 ∈ No ) → 𝐵 ∈ No ) |
| 7 |
|
oldbday |
⊢ ( ( ( bday ‘ 𝐴 ) ∈ On ∧ 𝐵 ∈ No ) → ( 𝐵 ∈ ( O ‘ ( bday ‘ 𝐴 ) ) ↔ ( bday ‘ 𝐵 ) ∈ ( bday ‘ 𝐴 ) ) ) |
| 8 |
5 6 7
|
sylancr |
⊢ ( ( 𝐴 ∈ Ons ∧ 𝐵 ∈ No ) → ( 𝐵 ∈ ( O ‘ ( bday ‘ 𝐴 ) ) ↔ ( bday ‘ 𝐵 ) ∈ ( bday ‘ 𝐴 ) ) ) |
| 9 |
|
onsleft |
⊢ ( 𝐴 ∈ Ons → ( O ‘ ( bday ‘ 𝐴 ) ) = ( L ‘ 𝐴 ) ) |
| 10 |
9
|
eleq2d |
⊢ ( 𝐴 ∈ Ons → ( 𝐵 ∈ ( O ‘ ( bday ‘ 𝐴 ) ) ↔ 𝐵 ∈ ( L ‘ 𝐴 ) ) ) |
| 11 |
10
|
adantr |
⊢ ( ( 𝐴 ∈ Ons ∧ 𝐵 ∈ No ) → ( 𝐵 ∈ ( O ‘ ( bday ‘ 𝐴 ) ) ↔ 𝐵 ∈ ( L ‘ 𝐴 ) ) ) |
| 12 |
8 11
|
bitr3d |
⊢ ( ( 𝐴 ∈ Ons ∧ 𝐵 ∈ No ) → ( ( bday ‘ 𝐵 ) ∈ ( bday ‘ 𝐴 ) ↔ 𝐵 ∈ ( L ‘ 𝐴 ) ) ) |
| 13 |
|
leftlt |
⊢ ( 𝐵 ∈ ( L ‘ 𝐴 ) → 𝐵 <s 𝐴 ) |
| 14 |
12 13
|
biimtrdi |
⊢ ( ( 𝐴 ∈ Ons ∧ 𝐵 ∈ No ) → ( ( bday ‘ 𝐵 ) ∈ ( bday ‘ 𝐴 ) → 𝐵 <s 𝐴 ) ) |
| 15 |
14
|
imp |
⊢ ( ( ( 𝐴 ∈ Ons ∧ 𝐵 ∈ No ) ∧ ( bday ‘ 𝐵 ) ∈ ( bday ‘ 𝐴 ) ) → 𝐵 <s 𝐴 ) |
| 16 |
1 4 15
|
sltled |
⊢ ( ( ( 𝐴 ∈ Ons ∧ 𝐵 ∈ No ) ∧ ( bday ‘ 𝐵 ) ∈ ( bday ‘ 𝐴 ) ) → 𝐵 ≤s 𝐴 ) |
| 17 |
16
|
ex |
⊢ ( ( 𝐴 ∈ Ons ∧ 𝐵 ∈ No ) → ( ( bday ‘ 𝐵 ) ∈ ( bday ‘ 𝐴 ) → 𝐵 ≤s 𝐴 ) ) |
| 18 |
|
leftssold |
⊢ ( L ‘ 𝐵 ) ⊆ ( O ‘ ( bday ‘ 𝐵 ) ) |
| 19 |
|
fveq2 |
⊢ ( ( bday ‘ 𝐵 ) = ( bday ‘ 𝐴 ) → ( O ‘ ( bday ‘ 𝐵 ) ) = ( O ‘ ( bday ‘ 𝐴 ) ) ) |
| 20 |
19
|
3ad2ant3 |
⊢ ( ( 𝐴 ∈ Ons ∧ 𝐵 ∈ No ∧ ( bday ‘ 𝐵 ) = ( bday ‘ 𝐴 ) ) → ( O ‘ ( bday ‘ 𝐵 ) ) = ( O ‘ ( bday ‘ 𝐴 ) ) ) |
| 21 |
9
|
3ad2ant1 |
⊢ ( ( 𝐴 ∈ Ons ∧ 𝐵 ∈ No ∧ ( bday ‘ 𝐵 ) = ( bday ‘ 𝐴 ) ) → ( O ‘ ( bday ‘ 𝐴 ) ) = ( L ‘ 𝐴 ) ) |
| 22 |
20 21
|
eqtrd |
⊢ ( ( 𝐴 ∈ Ons ∧ 𝐵 ∈ No ∧ ( bday ‘ 𝐵 ) = ( bday ‘ 𝐴 ) ) → ( O ‘ ( bday ‘ 𝐵 ) ) = ( L ‘ 𝐴 ) ) |
| 23 |
18 22
|
sseqtrid |
⊢ ( ( 𝐴 ∈ Ons ∧ 𝐵 ∈ No ∧ ( bday ‘ 𝐵 ) = ( bday ‘ 𝐴 ) ) → ( L ‘ 𝐵 ) ⊆ ( L ‘ 𝐴 ) ) |
| 24 |
|
simp2 |
⊢ ( ( 𝐴 ∈ Ons ∧ 𝐵 ∈ No ∧ ( bday ‘ 𝐵 ) = ( bday ‘ 𝐴 ) ) → 𝐵 ∈ No ) |
| 25 |
2
|
3ad2ant1 |
⊢ ( ( 𝐴 ∈ Ons ∧ 𝐵 ∈ No ∧ ( bday ‘ 𝐵 ) = ( bday ‘ 𝐴 ) ) → 𝐴 ∈ No ) |
| 26 |
|
simp3 |
⊢ ( ( 𝐴 ∈ Ons ∧ 𝐵 ∈ No ∧ ( bday ‘ 𝐵 ) = ( bday ‘ 𝐴 ) ) → ( bday ‘ 𝐵 ) = ( bday ‘ 𝐴 ) ) |
| 27 |
|
slelss |
⊢ ( ( 𝐵 ∈ No ∧ 𝐴 ∈ No ∧ ( bday ‘ 𝐵 ) = ( bday ‘ 𝐴 ) ) → ( 𝐵 ≤s 𝐴 ↔ ( L ‘ 𝐵 ) ⊆ ( L ‘ 𝐴 ) ) ) |
| 28 |
24 25 26 27
|
syl3anc |
⊢ ( ( 𝐴 ∈ Ons ∧ 𝐵 ∈ No ∧ ( bday ‘ 𝐵 ) = ( bday ‘ 𝐴 ) ) → ( 𝐵 ≤s 𝐴 ↔ ( L ‘ 𝐵 ) ⊆ ( L ‘ 𝐴 ) ) ) |
| 29 |
23 28
|
mpbird |
⊢ ( ( 𝐴 ∈ Ons ∧ 𝐵 ∈ No ∧ ( bday ‘ 𝐵 ) = ( bday ‘ 𝐴 ) ) → 𝐵 ≤s 𝐴 ) |
| 30 |
29
|
3expia |
⊢ ( ( 𝐴 ∈ Ons ∧ 𝐵 ∈ No ) → ( ( bday ‘ 𝐵 ) = ( bday ‘ 𝐴 ) → 𝐵 ≤s 𝐴 ) ) |
| 31 |
17 30
|
jaod |
⊢ ( ( 𝐴 ∈ Ons ∧ 𝐵 ∈ No ) → ( ( ( bday ‘ 𝐵 ) ∈ ( bday ‘ 𝐴 ) ∨ ( bday ‘ 𝐵 ) = ( bday ‘ 𝐴 ) ) → 𝐵 ≤s 𝐴 ) ) |
| 32 |
|
bdayelon |
⊢ ( bday ‘ 𝐵 ) ∈ On |
| 33 |
32 5
|
onsseli |
⊢ ( ( bday ‘ 𝐵 ) ⊆ ( bday ‘ 𝐴 ) ↔ ( ( bday ‘ 𝐵 ) ∈ ( bday ‘ 𝐴 ) ∨ ( bday ‘ 𝐵 ) = ( bday ‘ 𝐴 ) ) ) |
| 34 |
|
ontri1 |
⊢ ( ( ( bday ‘ 𝐵 ) ∈ On ∧ ( bday ‘ 𝐴 ) ∈ On ) → ( ( bday ‘ 𝐵 ) ⊆ ( bday ‘ 𝐴 ) ↔ ¬ ( bday ‘ 𝐴 ) ∈ ( bday ‘ 𝐵 ) ) ) |
| 35 |
32 5 34
|
mp2an |
⊢ ( ( bday ‘ 𝐵 ) ⊆ ( bday ‘ 𝐴 ) ↔ ¬ ( bday ‘ 𝐴 ) ∈ ( bday ‘ 𝐵 ) ) |
| 36 |
33 35
|
bitr3i |
⊢ ( ( ( bday ‘ 𝐵 ) ∈ ( bday ‘ 𝐴 ) ∨ ( bday ‘ 𝐵 ) = ( bday ‘ 𝐴 ) ) ↔ ¬ ( bday ‘ 𝐴 ) ∈ ( bday ‘ 𝐵 ) ) |
| 37 |
36
|
a1i |
⊢ ( ( 𝐴 ∈ Ons ∧ 𝐵 ∈ No ) → ( ( ( bday ‘ 𝐵 ) ∈ ( bday ‘ 𝐴 ) ∨ ( bday ‘ 𝐵 ) = ( bday ‘ 𝐴 ) ) ↔ ¬ ( bday ‘ 𝐴 ) ∈ ( bday ‘ 𝐵 ) ) ) |
| 38 |
|
slenlt |
⊢ ( ( 𝐵 ∈ No ∧ 𝐴 ∈ No ) → ( 𝐵 ≤s 𝐴 ↔ ¬ 𝐴 <s 𝐵 ) ) |
| 39 |
6 3 38
|
syl2anc |
⊢ ( ( 𝐴 ∈ Ons ∧ 𝐵 ∈ No ) → ( 𝐵 ≤s 𝐴 ↔ ¬ 𝐴 <s 𝐵 ) ) |
| 40 |
31 37 39
|
3imtr3d |
⊢ ( ( 𝐴 ∈ Ons ∧ 𝐵 ∈ No ) → ( ¬ ( bday ‘ 𝐴 ) ∈ ( bday ‘ 𝐵 ) → ¬ 𝐴 <s 𝐵 ) ) |
| 41 |
40
|
con4d |
⊢ ( ( 𝐴 ∈ Ons ∧ 𝐵 ∈ No ) → ( 𝐴 <s 𝐵 → ( bday ‘ 𝐴 ) ∈ ( bday ‘ 𝐵 ) ) ) |
| 42 |
41
|
3impia |
⊢ ( ( 𝐴 ∈ Ons ∧ 𝐵 ∈ No ∧ 𝐴 <s 𝐵 ) → ( bday ‘ 𝐴 ) ∈ ( bday ‘ 𝐵 ) ) |