| Step |
Hyp |
Ref |
Expression |
| 1 |
|
bdayfun |
⊢ Fun bday |
| 2 |
|
funres |
⊢ ( Fun bday → Fun ( bday ↾ Ons ) ) |
| 3 |
1 2
|
ax-mp |
⊢ Fun ( bday ↾ Ons ) |
| 4 |
|
dmres |
⊢ dom ( bday ↾ Ons ) = ( Ons ∩ dom bday ) |
| 5 |
|
bdaydm |
⊢ dom bday = No |
| 6 |
5
|
ineq2i |
⊢ ( Ons ∩ dom bday ) = ( Ons ∩ No ) |
| 7 |
|
onssno |
⊢ Ons ⊆ No |
| 8 |
|
dfss2 |
⊢ ( Ons ⊆ No ↔ ( Ons ∩ No ) = Ons ) |
| 9 |
7 8
|
mpbi |
⊢ ( Ons ∩ No ) = Ons |
| 10 |
4 6 9
|
3eqtri |
⊢ dom ( bday ↾ Ons ) = Ons |
| 11 |
|
df-fn |
⊢ ( ( bday ↾ Ons ) Fn Ons ↔ ( Fun ( bday ↾ Ons ) ∧ dom ( bday ↾ Ons ) = Ons ) ) |
| 12 |
3 10 11
|
mpbir2an |
⊢ ( bday ↾ Ons ) Fn Ons |
| 13 |
|
rnresss |
⊢ ran ( bday ↾ Ons ) ⊆ ran bday |
| 14 |
|
bdayrn |
⊢ ran bday = On |
| 15 |
13 14
|
sseqtri |
⊢ ran ( bday ↾ Ons ) ⊆ On |
| 16 |
|
df-f |
⊢ ( ( bday ↾ Ons ) : Ons ⟶ On ↔ ( ( bday ↾ Ons ) Fn Ons ∧ ran ( bday ↾ Ons ) ⊆ On ) ) |
| 17 |
12 15 16
|
mpbir2an |
⊢ ( bday ↾ Ons ) : Ons ⟶ On |
| 18 |
|
fvres |
⊢ ( 𝑥 ∈ Ons → ( ( bday ↾ Ons ) ‘ 𝑥 ) = ( bday ‘ 𝑥 ) ) |
| 19 |
|
fvres |
⊢ ( 𝑦 ∈ Ons → ( ( bday ↾ Ons ) ‘ 𝑦 ) = ( bday ‘ 𝑦 ) ) |
| 20 |
18 19
|
eqeqan12d |
⊢ ( ( 𝑥 ∈ Ons ∧ 𝑦 ∈ Ons ) → ( ( ( bday ↾ Ons ) ‘ 𝑥 ) = ( ( bday ↾ Ons ) ‘ 𝑦 ) ↔ ( bday ‘ 𝑥 ) = ( bday ‘ 𝑦 ) ) ) |
| 21 |
|
bday11on |
⊢ ( ( 𝑥 ∈ Ons ∧ 𝑦 ∈ Ons ∧ ( bday ‘ 𝑥 ) = ( bday ‘ 𝑦 ) ) → 𝑥 = 𝑦 ) |
| 22 |
21
|
3expia |
⊢ ( ( 𝑥 ∈ Ons ∧ 𝑦 ∈ Ons ) → ( ( bday ‘ 𝑥 ) = ( bday ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) |
| 23 |
20 22
|
sylbid |
⊢ ( ( 𝑥 ∈ Ons ∧ 𝑦 ∈ Ons ) → ( ( ( bday ↾ Ons ) ‘ 𝑥 ) = ( ( bday ↾ Ons ) ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) |
| 24 |
23
|
rgen2 |
⊢ ∀ 𝑥 ∈ Ons ∀ 𝑦 ∈ Ons ( ( ( bday ↾ Ons ) ‘ 𝑥 ) = ( ( bday ↾ Ons ) ‘ 𝑦 ) → 𝑥 = 𝑦 ) |
| 25 |
|
dff13 |
⊢ ( ( bday ↾ Ons ) : Ons –1-1→ On ↔ ( ( bday ↾ Ons ) : Ons ⟶ On ∧ ∀ 𝑥 ∈ Ons ∀ 𝑦 ∈ Ons ( ( ( bday ↾ Ons ) ‘ 𝑥 ) = ( ( bday ↾ Ons ) ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) ) |
| 26 |
17 24 25
|
mpbir2an |
⊢ ( bday ↾ Ons ) : Ons –1-1→ On |
| 27 |
|
fveqeq2 |
⊢ ( 𝑦 = ( ( O ‘ 𝑥 ) |s ∅ ) → ( ( ( bday ↾ Ons ) ‘ 𝑦 ) = 𝑥 ↔ ( ( bday ↾ Ons ) ‘ ( ( O ‘ 𝑥 ) |s ∅ ) ) = 𝑥 ) ) |
| 28 |
|
fvex |
⊢ ( O ‘ 𝑥 ) ∈ V |
| 29 |
28
|
a1i |
⊢ ( 𝑥 ∈ On → ( O ‘ 𝑥 ) ∈ V ) |
| 30 |
|
oldssno |
⊢ ( O ‘ 𝑥 ) ⊆ No |
| 31 |
30
|
a1i |
⊢ ( 𝑥 ∈ On → ( O ‘ 𝑥 ) ⊆ No ) |
| 32 |
|
eqidd |
⊢ ( 𝑥 ∈ On → ( ( O ‘ 𝑥 ) |s ∅ ) = ( ( O ‘ 𝑥 ) |s ∅ ) ) |
| 33 |
29 31 32
|
elons2d |
⊢ ( 𝑥 ∈ On → ( ( O ‘ 𝑥 ) |s ∅ ) ∈ Ons ) |
| 34 |
33
|
fvresd |
⊢ ( 𝑥 ∈ On → ( ( bday ↾ Ons ) ‘ ( ( O ‘ 𝑥 ) |s ∅ ) ) = ( bday ‘ ( ( O ‘ 𝑥 ) |s ∅ ) ) ) |
| 35 |
28
|
elpw |
⊢ ( ( O ‘ 𝑥 ) ∈ 𝒫 No ↔ ( O ‘ 𝑥 ) ⊆ No ) |
| 36 |
30 35
|
mpbir |
⊢ ( O ‘ 𝑥 ) ∈ 𝒫 No |
| 37 |
|
nulssgt |
⊢ ( ( O ‘ 𝑥 ) ∈ 𝒫 No → ( O ‘ 𝑥 ) <<s ∅ ) |
| 38 |
36 37
|
ax-mp |
⊢ ( O ‘ 𝑥 ) <<s ∅ |
| 39 |
|
id |
⊢ ( 𝑥 ∈ On → 𝑥 ∈ On ) |
| 40 |
|
un0 |
⊢ ( ( O ‘ 𝑥 ) ∪ ∅ ) = ( O ‘ 𝑥 ) |
| 41 |
40
|
imaeq2i |
⊢ ( bday “ ( ( O ‘ 𝑥 ) ∪ ∅ ) ) = ( bday “ ( O ‘ 𝑥 ) ) |
| 42 |
|
oldbdayim |
⊢ ( 𝑦 ∈ ( O ‘ 𝑥 ) → ( bday ‘ 𝑦 ) ∈ 𝑥 ) |
| 43 |
42
|
rgen |
⊢ ∀ 𝑦 ∈ ( O ‘ 𝑥 ) ( bday ‘ 𝑦 ) ∈ 𝑥 |
| 44 |
43
|
a1i |
⊢ ( 𝑥 ∈ On → ∀ 𝑦 ∈ ( O ‘ 𝑥 ) ( bday ‘ 𝑦 ) ∈ 𝑥 ) |
| 45 |
30 5
|
sseqtrri |
⊢ ( O ‘ 𝑥 ) ⊆ dom bday |
| 46 |
|
funimass4 |
⊢ ( ( Fun bday ∧ ( O ‘ 𝑥 ) ⊆ dom bday ) → ( ( bday “ ( O ‘ 𝑥 ) ) ⊆ 𝑥 ↔ ∀ 𝑦 ∈ ( O ‘ 𝑥 ) ( bday ‘ 𝑦 ) ∈ 𝑥 ) ) |
| 47 |
1 45 46
|
mp2an |
⊢ ( ( bday “ ( O ‘ 𝑥 ) ) ⊆ 𝑥 ↔ ∀ 𝑦 ∈ ( O ‘ 𝑥 ) ( bday ‘ 𝑦 ) ∈ 𝑥 ) |
| 48 |
44 47
|
sylibr |
⊢ ( 𝑥 ∈ On → ( bday “ ( O ‘ 𝑥 ) ) ⊆ 𝑥 ) |
| 49 |
41 48
|
eqsstrid |
⊢ ( 𝑥 ∈ On → ( bday “ ( ( O ‘ 𝑥 ) ∪ ∅ ) ) ⊆ 𝑥 ) |
| 50 |
|
scutbdaybnd |
⊢ ( ( ( O ‘ 𝑥 ) <<s ∅ ∧ 𝑥 ∈ On ∧ ( bday “ ( ( O ‘ 𝑥 ) ∪ ∅ ) ) ⊆ 𝑥 ) → ( bday ‘ ( ( O ‘ 𝑥 ) |s ∅ ) ) ⊆ 𝑥 ) |
| 51 |
38 39 49 50
|
mp3an2i |
⊢ ( 𝑥 ∈ On → ( bday ‘ ( ( O ‘ 𝑥 ) |s ∅ ) ) ⊆ 𝑥 ) |
| 52 |
|
ssltsep |
⊢ ( ( O ‘ 𝑥 ) <<s { 𝑤 } → ∀ 𝑦 ∈ ( O ‘ 𝑥 ) ∀ 𝑧 ∈ { 𝑤 } 𝑦 <s 𝑧 ) |
| 53 |
|
vex |
⊢ 𝑤 ∈ V |
| 54 |
|
breq2 |
⊢ ( 𝑧 = 𝑤 → ( 𝑦 <s 𝑧 ↔ 𝑦 <s 𝑤 ) ) |
| 55 |
53 54
|
ralsn |
⊢ ( ∀ 𝑧 ∈ { 𝑤 } 𝑦 <s 𝑧 ↔ 𝑦 <s 𝑤 ) |
| 56 |
55
|
ralbii |
⊢ ( ∀ 𝑦 ∈ ( O ‘ 𝑥 ) ∀ 𝑧 ∈ { 𝑤 } 𝑦 <s 𝑧 ↔ ∀ 𝑦 ∈ ( O ‘ 𝑥 ) 𝑦 <s 𝑤 ) |
| 57 |
52 56
|
sylib |
⊢ ( ( O ‘ 𝑥 ) <<s { 𝑤 } → ∀ 𝑦 ∈ ( O ‘ 𝑥 ) 𝑦 <s 𝑤 ) |
| 58 |
|
sltirr |
⊢ ( 𝑤 ∈ No → ¬ 𝑤 <s 𝑤 ) |
| 59 |
58
|
3ad2ant2 |
⊢ ( ( 𝑥 ∈ On ∧ 𝑤 ∈ No ∧ ∀ 𝑦 ∈ ( O ‘ 𝑥 ) 𝑦 <s 𝑤 ) → ¬ 𝑤 <s 𝑤 ) |
| 60 |
|
oldbday |
⊢ ( ( 𝑥 ∈ On ∧ 𝑤 ∈ No ) → ( 𝑤 ∈ ( O ‘ 𝑥 ) ↔ ( bday ‘ 𝑤 ) ∈ 𝑥 ) ) |
| 61 |
60
|
3adant3 |
⊢ ( ( 𝑥 ∈ On ∧ 𝑤 ∈ No ∧ ∀ 𝑦 ∈ ( O ‘ 𝑥 ) 𝑦 <s 𝑤 ) → ( 𝑤 ∈ ( O ‘ 𝑥 ) ↔ ( bday ‘ 𝑤 ) ∈ 𝑥 ) ) |
| 62 |
|
breq1 |
⊢ ( 𝑦 = 𝑤 → ( 𝑦 <s 𝑤 ↔ 𝑤 <s 𝑤 ) ) |
| 63 |
62
|
rspccv |
⊢ ( ∀ 𝑦 ∈ ( O ‘ 𝑥 ) 𝑦 <s 𝑤 → ( 𝑤 ∈ ( O ‘ 𝑥 ) → 𝑤 <s 𝑤 ) ) |
| 64 |
63
|
3ad2ant3 |
⊢ ( ( 𝑥 ∈ On ∧ 𝑤 ∈ No ∧ ∀ 𝑦 ∈ ( O ‘ 𝑥 ) 𝑦 <s 𝑤 ) → ( 𝑤 ∈ ( O ‘ 𝑥 ) → 𝑤 <s 𝑤 ) ) |
| 65 |
61 64
|
sylbird |
⊢ ( ( 𝑥 ∈ On ∧ 𝑤 ∈ No ∧ ∀ 𝑦 ∈ ( O ‘ 𝑥 ) 𝑦 <s 𝑤 ) → ( ( bday ‘ 𝑤 ) ∈ 𝑥 → 𝑤 <s 𝑤 ) ) |
| 66 |
59 65
|
mtod |
⊢ ( ( 𝑥 ∈ On ∧ 𝑤 ∈ No ∧ ∀ 𝑦 ∈ ( O ‘ 𝑥 ) 𝑦 <s 𝑤 ) → ¬ ( bday ‘ 𝑤 ) ∈ 𝑥 ) |
| 67 |
|
simp1 |
⊢ ( ( 𝑥 ∈ On ∧ 𝑤 ∈ No ∧ ∀ 𝑦 ∈ ( O ‘ 𝑥 ) 𝑦 <s 𝑤 ) → 𝑥 ∈ On ) |
| 68 |
|
bdayelon |
⊢ ( bday ‘ 𝑤 ) ∈ On |
| 69 |
|
ontri1 |
⊢ ( ( 𝑥 ∈ On ∧ ( bday ‘ 𝑤 ) ∈ On ) → ( 𝑥 ⊆ ( bday ‘ 𝑤 ) ↔ ¬ ( bday ‘ 𝑤 ) ∈ 𝑥 ) ) |
| 70 |
67 68 69
|
sylancl |
⊢ ( ( 𝑥 ∈ On ∧ 𝑤 ∈ No ∧ ∀ 𝑦 ∈ ( O ‘ 𝑥 ) 𝑦 <s 𝑤 ) → ( 𝑥 ⊆ ( bday ‘ 𝑤 ) ↔ ¬ ( bday ‘ 𝑤 ) ∈ 𝑥 ) ) |
| 71 |
66 70
|
mpbird |
⊢ ( ( 𝑥 ∈ On ∧ 𝑤 ∈ No ∧ ∀ 𝑦 ∈ ( O ‘ 𝑥 ) 𝑦 <s 𝑤 ) → 𝑥 ⊆ ( bday ‘ 𝑤 ) ) |
| 72 |
71
|
3expia |
⊢ ( ( 𝑥 ∈ On ∧ 𝑤 ∈ No ) → ( ∀ 𝑦 ∈ ( O ‘ 𝑥 ) 𝑦 <s 𝑤 → 𝑥 ⊆ ( bday ‘ 𝑤 ) ) ) |
| 73 |
57 72
|
syl5 |
⊢ ( ( 𝑥 ∈ On ∧ 𝑤 ∈ No ) → ( ( O ‘ 𝑥 ) <<s { 𝑤 } → 𝑥 ⊆ ( bday ‘ 𝑤 ) ) ) |
| 74 |
73
|
adantrd |
⊢ ( ( 𝑥 ∈ On ∧ 𝑤 ∈ No ) → ( ( ( O ‘ 𝑥 ) <<s { 𝑤 } ∧ { 𝑤 } <<s ∅ ) → 𝑥 ⊆ ( bday ‘ 𝑤 ) ) ) |
| 75 |
74
|
ralrimiva |
⊢ ( 𝑥 ∈ On → ∀ 𝑤 ∈ No ( ( ( O ‘ 𝑥 ) <<s { 𝑤 } ∧ { 𝑤 } <<s ∅ ) → 𝑥 ⊆ ( bday ‘ 𝑤 ) ) ) |
| 76 |
|
ssint |
⊢ ( 𝑥 ⊆ ∩ ( bday “ { 𝑦 ∈ No ∣ ( ( O ‘ 𝑥 ) <<s { 𝑦 } ∧ { 𝑦 } <<s ∅ ) } ) ↔ ∀ 𝑧 ∈ ( bday “ { 𝑦 ∈ No ∣ ( ( O ‘ 𝑥 ) <<s { 𝑦 } ∧ { 𝑦 } <<s ∅ ) } ) 𝑥 ⊆ 𝑧 ) |
| 77 |
|
bdayfn |
⊢ bday Fn No |
| 78 |
|
ssrab2 |
⊢ { 𝑦 ∈ No ∣ ( ( O ‘ 𝑥 ) <<s { 𝑦 } ∧ { 𝑦 } <<s ∅ ) } ⊆ No |
| 79 |
|
sseq2 |
⊢ ( 𝑧 = ( bday ‘ 𝑤 ) → ( 𝑥 ⊆ 𝑧 ↔ 𝑥 ⊆ ( bday ‘ 𝑤 ) ) ) |
| 80 |
79
|
ralima |
⊢ ( ( bday Fn No ∧ { 𝑦 ∈ No ∣ ( ( O ‘ 𝑥 ) <<s { 𝑦 } ∧ { 𝑦 } <<s ∅ ) } ⊆ No ) → ( ∀ 𝑧 ∈ ( bday “ { 𝑦 ∈ No ∣ ( ( O ‘ 𝑥 ) <<s { 𝑦 } ∧ { 𝑦 } <<s ∅ ) } ) 𝑥 ⊆ 𝑧 ↔ ∀ 𝑤 ∈ { 𝑦 ∈ No ∣ ( ( O ‘ 𝑥 ) <<s { 𝑦 } ∧ { 𝑦 } <<s ∅ ) } 𝑥 ⊆ ( bday ‘ 𝑤 ) ) ) |
| 81 |
77 78 80
|
mp2an |
⊢ ( ∀ 𝑧 ∈ ( bday “ { 𝑦 ∈ No ∣ ( ( O ‘ 𝑥 ) <<s { 𝑦 } ∧ { 𝑦 } <<s ∅ ) } ) 𝑥 ⊆ 𝑧 ↔ ∀ 𝑤 ∈ { 𝑦 ∈ No ∣ ( ( O ‘ 𝑥 ) <<s { 𝑦 } ∧ { 𝑦 } <<s ∅ ) } 𝑥 ⊆ ( bday ‘ 𝑤 ) ) |
| 82 |
|
sneq |
⊢ ( 𝑦 = 𝑤 → { 𝑦 } = { 𝑤 } ) |
| 83 |
82
|
breq2d |
⊢ ( 𝑦 = 𝑤 → ( ( O ‘ 𝑥 ) <<s { 𝑦 } ↔ ( O ‘ 𝑥 ) <<s { 𝑤 } ) ) |
| 84 |
82
|
breq1d |
⊢ ( 𝑦 = 𝑤 → ( { 𝑦 } <<s ∅ ↔ { 𝑤 } <<s ∅ ) ) |
| 85 |
83 84
|
anbi12d |
⊢ ( 𝑦 = 𝑤 → ( ( ( O ‘ 𝑥 ) <<s { 𝑦 } ∧ { 𝑦 } <<s ∅ ) ↔ ( ( O ‘ 𝑥 ) <<s { 𝑤 } ∧ { 𝑤 } <<s ∅ ) ) ) |
| 86 |
85
|
ralrab |
⊢ ( ∀ 𝑤 ∈ { 𝑦 ∈ No ∣ ( ( O ‘ 𝑥 ) <<s { 𝑦 } ∧ { 𝑦 } <<s ∅ ) } 𝑥 ⊆ ( bday ‘ 𝑤 ) ↔ ∀ 𝑤 ∈ No ( ( ( O ‘ 𝑥 ) <<s { 𝑤 } ∧ { 𝑤 } <<s ∅ ) → 𝑥 ⊆ ( bday ‘ 𝑤 ) ) ) |
| 87 |
76 81 86
|
3bitri |
⊢ ( 𝑥 ⊆ ∩ ( bday “ { 𝑦 ∈ No ∣ ( ( O ‘ 𝑥 ) <<s { 𝑦 } ∧ { 𝑦 } <<s ∅ ) } ) ↔ ∀ 𝑤 ∈ No ( ( ( O ‘ 𝑥 ) <<s { 𝑤 } ∧ { 𝑤 } <<s ∅ ) → 𝑥 ⊆ ( bday ‘ 𝑤 ) ) ) |
| 88 |
75 87
|
sylibr |
⊢ ( 𝑥 ∈ On → 𝑥 ⊆ ∩ ( bday “ { 𝑦 ∈ No ∣ ( ( O ‘ 𝑥 ) <<s { 𝑦 } ∧ { 𝑦 } <<s ∅ ) } ) ) |
| 89 |
|
scutbday |
⊢ ( ( O ‘ 𝑥 ) <<s ∅ → ( bday ‘ ( ( O ‘ 𝑥 ) |s ∅ ) ) = ∩ ( bday “ { 𝑦 ∈ No ∣ ( ( O ‘ 𝑥 ) <<s { 𝑦 } ∧ { 𝑦 } <<s ∅ ) } ) ) |
| 90 |
38 89
|
ax-mp |
⊢ ( bday ‘ ( ( O ‘ 𝑥 ) |s ∅ ) ) = ∩ ( bday “ { 𝑦 ∈ No ∣ ( ( O ‘ 𝑥 ) <<s { 𝑦 } ∧ { 𝑦 } <<s ∅ ) } ) |
| 91 |
88 90
|
sseqtrrdi |
⊢ ( 𝑥 ∈ On → 𝑥 ⊆ ( bday ‘ ( ( O ‘ 𝑥 ) |s ∅ ) ) ) |
| 92 |
51 91
|
eqssd |
⊢ ( 𝑥 ∈ On → ( bday ‘ ( ( O ‘ 𝑥 ) |s ∅ ) ) = 𝑥 ) |
| 93 |
34 92
|
eqtrd |
⊢ ( 𝑥 ∈ On → ( ( bday ↾ Ons ) ‘ ( ( O ‘ 𝑥 ) |s ∅ ) ) = 𝑥 ) |
| 94 |
27 33 93
|
rspcedvdw |
⊢ ( 𝑥 ∈ On → ∃ 𝑦 ∈ Ons ( ( bday ↾ Ons ) ‘ 𝑦 ) = 𝑥 ) |
| 95 |
|
fvelrnb |
⊢ ( ( bday ↾ Ons ) Fn Ons → ( 𝑥 ∈ ran ( bday ↾ Ons ) ↔ ∃ 𝑦 ∈ Ons ( ( bday ↾ Ons ) ‘ 𝑦 ) = 𝑥 ) ) |
| 96 |
12 95
|
ax-mp |
⊢ ( 𝑥 ∈ ran ( bday ↾ Ons ) ↔ ∃ 𝑦 ∈ Ons ( ( bday ↾ Ons ) ‘ 𝑦 ) = 𝑥 ) |
| 97 |
94 96
|
sylibr |
⊢ ( 𝑥 ∈ On → 𝑥 ∈ ran ( bday ↾ Ons ) ) |
| 98 |
97
|
ssriv |
⊢ On ⊆ ran ( bday ↾ Ons ) |
| 99 |
15 98
|
eqssi |
⊢ ran ( bday ↾ Ons ) = On |
| 100 |
|
df-fo |
⊢ ( ( bday ↾ Ons ) : Ons –onto→ On ↔ ( ( bday ↾ Ons ) Fn Ons ∧ ran ( bday ↾ Ons ) = On ) ) |
| 101 |
12 99 100
|
mpbir2an |
⊢ ( bday ↾ Ons ) : Ons –onto→ On |
| 102 |
|
df-f1o |
⊢ ( ( bday ↾ Ons ) : Ons –1-1-onto→ On ↔ ( ( bday ↾ Ons ) : Ons –1-1→ On ∧ ( bday ↾ Ons ) : Ons –onto→ On ) ) |
| 103 |
26 101 102
|
mpbir2an |
⊢ ( bday ↾ Ons ) : Ons –1-1-onto→ On |
| 104 |
|
onslt |
⊢ ( ( 𝑥 ∈ Ons ∧ 𝑦 ∈ Ons ) → ( 𝑥 <s 𝑦 ↔ ( bday ‘ 𝑥 ) ∈ ( bday ‘ 𝑦 ) ) ) |
| 105 |
|
fvex |
⊢ ( bday ‘ 𝑦 ) ∈ V |
| 106 |
105
|
epeli |
⊢ ( ( bday ‘ 𝑥 ) E ( bday ‘ 𝑦 ) ↔ ( bday ‘ 𝑥 ) ∈ ( bday ‘ 𝑦 ) ) |
| 107 |
104 106
|
bitr4di |
⊢ ( ( 𝑥 ∈ Ons ∧ 𝑦 ∈ Ons ) → ( 𝑥 <s 𝑦 ↔ ( bday ‘ 𝑥 ) E ( bday ‘ 𝑦 ) ) ) |
| 108 |
18 19
|
breqan12d |
⊢ ( ( 𝑥 ∈ Ons ∧ 𝑦 ∈ Ons ) → ( ( ( bday ↾ Ons ) ‘ 𝑥 ) E ( ( bday ↾ Ons ) ‘ 𝑦 ) ↔ ( bday ‘ 𝑥 ) E ( bday ‘ 𝑦 ) ) ) |
| 109 |
107 108
|
bitr4d |
⊢ ( ( 𝑥 ∈ Ons ∧ 𝑦 ∈ Ons ) → ( 𝑥 <s 𝑦 ↔ ( ( bday ↾ Ons ) ‘ 𝑥 ) E ( ( bday ↾ Ons ) ‘ 𝑦 ) ) ) |
| 110 |
109
|
rgen2 |
⊢ ∀ 𝑥 ∈ Ons ∀ 𝑦 ∈ Ons ( 𝑥 <s 𝑦 ↔ ( ( bday ↾ Ons ) ‘ 𝑥 ) E ( ( bday ↾ Ons ) ‘ 𝑦 ) ) |
| 111 |
|
df-isom |
⊢ ( ( bday ↾ Ons ) Isom <s , E ( Ons , On ) ↔ ( ( bday ↾ Ons ) : Ons –1-1-onto→ On ∧ ∀ 𝑥 ∈ Ons ∀ 𝑦 ∈ Ons ( 𝑥 <s 𝑦 ↔ ( ( bday ↾ Ons ) ‘ 𝑥 ) E ( ( bday ↾ Ons ) ‘ 𝑦 ) ) ) ) |
| 112 |
103 110 111
|
mpbir2an |
⊢ ( bday ↾ Ons ) Isom <s , E ( Ons , On ) |