Metamath Proof Explorer


Theorem onswe

Description: Surreal less-than well-orders the surreal ordinals. Part of Theorem 15 of Conway p. 28. (Contributed by Scott Fenton, 6-Nov-2025)

Ref Expression
Assertion onswe <s We Ons

Proof

Step Hyp Ref Expression
1 epweon E We On
2 onsiso ( bday ↾ Ons ) Isom <s , E ( Ons , On )
3 isowe ( ( bday ↾ Ons ) Isom <s , E ( Ons , On ) → ( <s We Ons ↔ E We On ) )
4 2 3 ax-mp ( <s We Ons ↔ E We On )
5 1 4 mpbir <s We Ons