Metamath Proof Explorer


Theorem onsse

Description: Surreal less-than is set-like over the surreal ordinals. (Contributed by Scott Fenton, 6-Nov-2025)

Ref Expression
Assertion onsse <s Se Ons

Proof

Step Hyp Ref Expression
1 epse E Se On
2 onsiso ( bday ↾ Ons ) Isom <s , E ( Ons , On )
3 isose ( ( bday ↾ Ons ) Isom <s , E ( Ons , On ) → ( <s Se Ons ↔ E Se On ) )
4 2 3 ax-mp ( <s Se Ons ↔ E Se On )
5 1 4 mpbir <s Se Ons