Metamath Proof Explorer


Theorem onsse

Description: Surreal less-than is set-like over the surreal ordinals. (Contributed by Scott Fenton, 6-Nov-2025)

Ref Expression
Assertion onsse
|- 

Proof

Step Hyp Ref Expression
1 epse
 |-  _E Se On
2 onsiso
 |-  ( bday |` On_s ) Isom 
3 isose
 |-  ( ( bday |` On_s ) Isom  (  _E Se On ) )
4 2 3 ax-mp
 |-  (  _E Se On )
5 1 4 mpbir
 |-