| Step |
Hyp |
Ref |
Expression |
| 1 |
|
bdayfun |
|- Fun bday |
| 2 |
|
funres |
|- ( Fun bday -> Fun ( bday |` On_s ) ) |
| 3 |
1 2
|
ax-mp |
|- Fun ( bday |` On_s ) |
| 4 |
|
dmres |
|- dom ( bday |` On_s ) = ( On_s i^i dom bday ) |
| 5 |
|
bdaydm |
|- dom bday = No |
| 6 |
5
|
ineq2i |
|- ( On_s i^i dom bday ) = ( On_s i^i No ) |
| 7 |
|
onssno |
|- On_s C_ No |
| 8 |
|
dfss2 |
|- ( On_s C_ No <-> ( On_s i^i No ) = On_s ) |
| 9 |
7 8
|
mpbi |
|- ( On_s i^i No ) = On_s |
| 10 |
4 6 9
|
3eqtri |
|- dom ( bday |` On_s ) = On_s |
| 11 |
|
df-fn |
|- ( ( bday |` On_s ) Fn On_s <-> ( Fun ( bday |` On_s ) /\ dom ( bday |` On_s ) = On_s ) ) |
| 12 |
3 10 11
|
mpbir2an |
|- ( bday |` On_s ) Fn On_s |
| 13 |
|
rnresss |
|- ran ( bday |` On_s ) C_ ran bday |
| 14 |
|
bdayrn |
|- ran bday = On |
| 15 |
13 14
|
sseqtri |
|- ran ( bday |` On_s ) C_ On |
| 16 |
|
df-f |
|- ( ( bday |` On_s ) : On_s --> On <-> ( ( bday |` On_s ) Fn On_s /\ ran ( bday |` On_s ) C_ On ) ) |
| 17 |
12 15 16
|
mpbir2an |
|- ( bday |` On_s ) : On_s --> On |
| 18 |
|
fvres |
|- ( x e. On_s -> ( ( bday |` On_s ) ` x ) = ( bday ` x ) ) |
| 19 |
|
fvres |
|- ( y e. On_s -> ( ( bday |` On_s ) ` y ) = ( bday ` y ) ) |
| 20 |
18 19
|
eqeqan12d |
|- ( ( x e. On_s /\ y e. On_s ) -> ( ( ( bday |` On_s ) ` x ) = ( ( bday |` On_s ) ` y ) <-> ( bday ` x ) = ( bday ` y ) ) ) |
| 21 |
|
bday11on |
|- ( ( x e. On_s /\ y e. On_s /\ ( bday ` x ) = ( bday ` y ) ) -> x = y ) |
| 22 |
21
|
3expia |
|- ( ( x e. On_s /\ y e. On_s ) -> ( ( bday ` x ) = ( bday ` y ) -> x = y ) ) |
| 23 |
20 22
|
sylbid |
|- ( ( x e. On_s /\ y e. On_s ) -> ( ( ( bday |` On_s ) ` x ) = ( ( bday |` On_s ) ` y ) -> x = y ) ) |
| 24 |
23
|
rgen2 |
|- A. x e. On_s A. y e. On_s ( ( ( bday |` On_s ) ` x ) = ( ( bday |` On_s ) ` y ) -> x = y ) |
| 25 |
|
dff13 |
|- ( ( bday |` On_s ) : On_s -1-1-> On <-> ( ( bday |` On_s ) : On_s --> On /\ A. x e. On_s A. y e. On_s ( ( ( bday |` On_s ) ` x ) = ( ( bday |` On_s ) ` y ) -> x = y ) ) ) |
| 26 |
17 24 25
|
mpbir2an |
|- ( bday |` On_s ) : On_s -1-1-> On |
| 27 |
|
fveqeq2 |
|- ( y = ( ( _Old ` x ) |s (/) ) -> ( ( ( bday |` On_s ) ` y ) = x <-> ( ( bday |` On_s ) ` ( ( _Old ` x ) |s (/) ) ) = x ) ) |
| 28 |
|
fvex |
|- ( _Old ` x ) e. _V |
| 29 |
28
|
a1i |
|- ( x e. On -> ( _Old ` x ) e. _V ) |
| 30 |
|
oldssno |
|- ( _Old ` x ) C_ No |
| 31 |
30
|
a1i |
|- ( x e. On -> ( _Old ` x ) C_ No ) |
| 32 |
|
eqidd |
|- ( x e. On -> ( ( _Old ` x ) |s (/) ) = ( ( _Old ` x ) |s (/) ) ) |
| 33 |
29 31 32
|
elons2d |
|- ( x e. On -> ( ( _Old ` x ) |s (/) ) e. On_s ) |
| 34 |
33
|
fvresd |
|- ( x e. On -> ( ( bday |` On_s ) ` ( ( _Old ` x ) |s (/) ) ) = ( bday ` ( ( _Old ` x ) |s (/) ) ) ) |
| 35 |
28
|
elpw |
|- ( ( _Old ` x ) e. ~P No <-> ( _Old ` x ) C_ No ) |
| 36 |
30 35
|
mpbir |
|- ( _Old ` x ) e. ~P No |
| 37 |
|
nulssgt |
|- ( ( _Old ` x ) e. ~P No -> ( _Old ` x ) < |
| 38 |
36 37
|
ax-mp |
|- ( _Old ` x ) < |
| 39 |
|
id |
|- ( x e. On -> x e. On ) |
| 40 |
|
un0 |
|- ( ( _Old ` x ) u. (/) ) = ( _Old ` x ) |
| 41 |
40
|
imaeq2i |
|- ( bday " ( ( _Old ` x ) u. (/) ) ) = ( bday " ( _Old ` x ) ) |
| 42 |
|
oldbdayim |
|- ( y e. ( _Old ` x ) -> ( bday ` y ) e. x ) |
| 43 |
42
|
rgen |
|- A. y e. ( _Old ` x ) ( bday ` y ) e. x |
| 44 |
43
|
a1i |
|- ( x e. On -> A. y e. ( _Old ` x ) ( bday ` y ) e. x ) |
| 45 |
30 5
|
sseqtrri |
|- ( _Old ` x ) C_ dom bday |
| 46 |
|
funimass4 |
|- ( ( Fun bday /\ ( _Old ` x ) C_ dom bday ) -> ( ( bday " ( _Old ` x ) ) C_ x <-> A. y e. ( _Old ` x ) ( bday ` y ) e. x ) ) |
| 47 |
1 45 46
|
mp2an |
|- ( ( bday " ( _Old ` x ) ) C_ x <-> A. y e. ( _Old ` x ) ( bday ` y ) e. x ) |
| 48 |
44 47
|
sylibr |
|- ( x e. On -> ( bday " ( _Old ` x ) ) C_ x ) |
| 49 |
41 48
|
eqsstrid |
|- ( x e. On -> ( bday " ( ( _Old ` x ) u. (/) ) ) C_ x ) |
| 50 |
|
scutbdaybnd |
|- ( ( ( _Old ` x ) < ( bday ` ( ( _Old ` x ) |s (/) ) ) C_ x ) |
| 51 |
38 39 49 50
|
mp3an2i |
|- ( x e. On -> ( bday ` ( ( _Old ` x ) |s (/) ) ) C_ x ) |
| 52 |
|
ssltsep |
|- ( ( _Old ` x ) < A. y e. ( _Old ` x ) A. z e. { w } y |
| 53 |
|
vex |
|- w e. _V |
| 54 |
|
breq2 |
|- ( z = w -> ( y y |
| 55 |
53 54
|
ralsn |
|- ( A. z e. { w } y y |
| 56 |
55
|
ralbii |
|- ( A. y e. ( _Old ` x ) A. z e. { w } y A. y e. ( _Old ` x ) y |
| 57 |
52 56
|
sylib |
|- ( ( _Old ` x ) < A. y e. ( _Old ` x ) y |
| 58 |
|
sltirr |
|- ( w e. No -> -. w |
| 59 |
58
|
3ad2ant2 |
|- ( ( x e. On /\ w e. No /\ A. y e. ( _Old ` x ) y -. w |
| 60 |
|
oldbday |
|- ( ( x e. On /\ w e. No ) -> ( w e. ( _Old ` x ) <-> ( bday ` w ) e. x ) ) |
| 61 |
60
|
3adant3 |
|- ( ( x e. On /\ w e. No /\ A. y e. ( _Old ` x ) y ( w e. ( _Old ` x ) <-> ( bday ` w ) e. x ) ) |
| 62 |
|
breq1 |
|- ( y = w -> ( y w |
| 63 |
62
|
rspccv |
|- ( A. y e. ( _Old ` x ) y ( w e. ( _Old ` x ) -> w |
| 64 |
63
|
3ad2ant3 |
|- ( ( x e. On /\ w e. No /\ A. y e. ( _Old ` x ) y ( w e. ( _Old ` x ) -> w |
| 65 |
61 64
|
sylbird |
|- ( ( x e. On /\ w e. No /\ A. y e. ( _Old ` x ) y ( ( bday ` w ) e. x -> w |
| 66 |
59 65
|
mtod |
|- ( ( x e. On /\ w e. No /\ A. y e. ( _Old ` x ) y -. ( bday ` w ) e. x ) |
| 67 |
|
simp1 |
|- ( ( x e. On /\ w e. No /\ A. y e. ( _Old ` x ) y x e. On ) |
| 68 |
|
bdayelon |
|- ( bday ` w ) e. On |
| 69 |
|
ontri1 |
|- ( ( x e. On /\ ( bday ` w ) e. On ) -> ( x C_ ( bday ` w ) <-> -. ( bday ` w ) e. x ) ) |
| 70 |
67 68 69
|
sylancl |
|- ( ( x e. On /\ w e. No /\ A. y e. ( _Old ` x ) y ( x C_ ( bday ` w ) <-> -. ( bday ` w ) e. x ) ) |
| 71 |
66 70
|
mpbird |
|- ( ( x e. On /\ w e. No /\ A. y e. ( _Old ` x ) y x C_ ( bday ` w ) ) |
| 72 |
71
|
3expia |
|- ( ( x e. On /\ w e. No ) -> ( A. y e. ( _Old ` x ) y x C_ ( bday ` w ) ) ) |
| 73 |
57 72
|
syl5 |
|- ( ( x e. On /\ w e. No ) -> ( ( _Old ` x ) < x C_ ( bday ` w ) ) ) |
| 74 |
73
|
adantrd |
|- ( ( x e. On /\ w e. No ) -> ( ( ( _Old ` x ) < x C_ ( bday ` w ) ) ) |
| 75 |
74
|
ralrimiva |
|- ( x e. On -> A. w e. No ( ( ( _Old ` x ) < x C_ ( bday ` w ) ) ) |
| 76 |
|
ssint |
|- ( x C_ |^| ( bday " { y e. No | ( ( _Old ` x ) < A. z e. ( bday " { y e. No | ( ( _Old ` x ) < |
| 77 |
|
bdayfn |
|- bday Fn No |
| 78 |
|
ssrab2 |
|- { y e. No | ( ( _Old ` x ) < |
| 79 |
|
sseq2 |
|- ( z = ( bday ` w ) -> ( x C_ z <-> x C_ ( bday ` w ) ) ) |
| 80 |
79
|
ralima |
|- ( ( bday Fn No /\ { y e. No | ( ( _Old ` x ) < ( A. z e. ( bday " { y e. No | ( ( _Old ` x ) < A. w e. { y e. No | ( ( _Old ` x ) < |
| 81 |
77 78 80
|
mp2an |
|- ( A. z e. ( bday " { y e. No | ( ( _Old ` x ) < A. w e. { y e. No | ( ( _Old ` x ) < |
| 82 |
|
sneq |
|- ( y = w -> { y } = { w } ) |
| 83 |
82
|
breq2d |
|- ( y = w -> ( ( _Old ` x ) < ( _Old ` x ) < |
| 84 |
82
|
breq1d |
|- ( y = w -> ( { y } < { w } < |
| 85 |
83 84
|
anbi12d |
|- ( y = w -> ( ( ( _Old ` x ) < ( ( _Old ` x ) < |
| 86 |
85
|
ralrab |
|- ( A. w e. { y e. No | ( ( _Old ` x ) < A. w e. No ( ( ( _Old ` x ) < x C_ ( bday ` w ) ) ) |
| 87 |
76 81 86
|
3bitri |
|- ( x C_ |^| ( bday " { y e. No | ( ( _Old ` x ) < A. w e. No ( ( ( _Old ` x ) < x C_ ( bday ` w ) ) ) |
| 88 |
75 87
|
sylibr |
|- ( x e. On -> x C_ |^| ( bday " { y e. No | ( ( _Old ` x ) < |
| 89 |
|
scutbday |
|- ( ( _Old ` x ) < ( bday ` ( ( _Old ` x ) |s (/) ) ) = |^| ( bday " { y e. No | ( ( _Old ` x ) < |
| 90 |
38 89
|
ax-mp |
|- ( bday ` ( ( _Old ` x ) |s (/) ) ) = |^| ( bday " { y e. No | ( ( _Old ` x ) < |
| 91 |
88 90
|
sseqtrrdi |
|- ( x e. On -> x C_ ( bday ` ( ( _Old ` x ) |s (/) ) ) ) |
| 92 |
51 91
|
eqssd |
|- ( x e. On -> ( bday ` ( ( _Old ` x ) |s (/) ) ) = x ) |
| 93 |
34 92
|
eqtrd |
|- ( x e. On -> ( ( bday |` On_s ) ` ( ( _Old ` x ) |s (/) ) ) = x ) |
| 94 |
27 33 93
|
rspcedvdw |
|- ( x e. On -> E. y e. On_s ( ( bday |` On_s ) ` y ) = x ) |
| 95 |
|
fvelrnb |
|- ( ( bday |` On_s ) Fn On_s -> ( x e. ran ( bday |` On_s ) <-> E. y e. On_s ( ( bday |` On_s ) ` y ) = x ) ) |
| 96 |
12 95
|
ax-mp |
|- ( x e. ran ( bday |` On_s ) <-> E. y e. On_s ( ( bday |` On_s ) ` y ) = x ) |
| 97 |
94 96
|
sylibr |
|- ( x e. On -> x e. ran ( bday |` On_s ) ) |
| 98 |
97
|
ssriv |
|- On C_ ran ( bday |` On_s ) |
| 99 |
15 98
|
eqssi |
|- ran ( bday |` On_s ) = On |
| 100 |
|
df-fo |
|- ( ( bday |` On_s ) : On_s -onto-> On <-> ( ( bday |` On_s ) Fn On_s /\ ran ( bday |` On_s ) = On ) ) |
| 101 |
12 99 100
|
mpbir2an |
|- ( bday |` On_s ) : On_s -onto-> On |
| 102 |
|
df-f1o |
|- ( ( bday |` On_s ) : On_s -1-1-onto-> On <-> ( ( bday |` On_s ) : On_s -1-1-> On /\ ( bday |` On_s ) : On_s -onto-> On ) ) |
| 103 |
26 101 102
|
mpbir2an |
|- ( bday |` On_s ) : On_s -1-1-onto-> On |
| 104 |
|
onslt |
|- ( ( x e. On_s /\ y e. On_s ) -> ( x ( bday ` x ) e. ( bday ` y ) ) ) |
| 105 |
|
fvex |
|- ( bday ` y ) e. _V |
| 106 |
105
|
epeli |
|- ( ( bday ` x ) _E ( bday ` y ) <-> ( bday ` x ) e. ( bday ` y ) ) |
| 107 |
104 106
|
bitr4di |
|- ( ( x e. On_s /\ y e. On_s ) -> ( x ( bday ` x ) _E ( bday ` y ) ) ) |
| 108 |
18 19
|
breqan12d |
|- ( ( x e. On_s /\ y e. On_s ) -> ( ( ( bday |` On_s ) ` x ) _E ( ( bday |` On_s ) ` y ) <-> ( bday ` x ) _E ( bday ` y ) ) ) |
| 109 |
107 108
|
bitr4d |
|- ( ( x e. On_s /\ y e. On_s ) -> ( x ( ( bday |` On_s ) ` x ) _E ( ( bday |` On_s ) ` y ) ) ) |
| 110 |
109
|
rgen2 |
|- A. x e. On_s A. y e. On_s ( x ( ( bday |` On_s ) ` x ) _E ( ( bday |` On_s ) ` y ) ) |
| 111 |
|
df-isom |
|- ( ( bday |` On_s ) Isom ( ( bday |` On_s ) : On_s -1-1-onto-> On /\ A. x e. On_s A. y e. On_s ( x ( ( bday |` On_s ) ` x ) _E ( ( bday |` On_s ) ` y ) ) ) ) |
| 112 |
103 110 111
|
mpbir2an |
|- ( bday |` On_s ) Isom |