Metamath Proof Explorer


Theorem onsiso

Description: The birthday function restricted to the surreal ordinals forms an order-preserving isomorphism with the regular ordinals. (Contributed by Scott Fenton, 8-Nov-2025)

Ref Expression
Assertion onsiso bday On s Isom < s , E On s On

Proof

Step Hyp Ref Expression
1 bdayfun Fun bday
2 funres Fun bday Fun bday On s
3 1 2 ax-mp Fun bday On s
4 dmres dom bday On s = On s dom bday
5 bdaydm dom bday = No
6 5 ineq2i On s dom bday = On s No
7 onssno On s No
8 dfss2 On s No On s No = On s
9 7 8 mpbi On s No = On s
10 4 6 9 3eqtri dom bday On s = On s
11 df-fn bday On s Fn On s Fun bday On s dom bday On s = On s
12 3 10 11 mpbir2an bday On s Fn On s
13 rnresss ran bday On s ran bday
14 bdayrn ran bday = On
15 13 14 sseqtri ran bday On s On
16 df-f bday On s : On s On bday On s Fn On s ran bday On s On
17 12 15 16 mpbir2an bday On s : On s On
18 fvres x On s bday On s x = bday x
19 fvres y On s bday On s y = bday y
20 18 19 eqeqan12d x On s y On s bday On s x = bday On s y bday x = bday y
21 bday11on x On s y On s bday x = bday y x = y
22 21 3expia x On s y On s bday x = bday y x = y
23 20 22 sylbid x On s y On s bday On s x = bday On s y x = y
24 23 rgen2 x On s y On s bday On s x = bday On s y x = y
25 dff13 bday On s : On s 1-1 On bday On s : On s On x On s y On s bday On s x = bday On s y x = y
26 17 24 25 mpbir2an bday On s : On s 1-1 On
27 fveqeq2 y = Old x | s bday On s y = x bday On s Old x | s = x
28 fvex Old x V
29 28 a1i x On Old x V
30 oldssno Old x No
31 30 a1i x On Old x No
32 eqidd x On Old x | s = Old x | s
33 29 31 32 elons2d x On Old x | s On s
34 33 fvresd x On bday On s Old x | s = bday Old x | s
35 28 elpw Old x 𝒫 No Old x No
36 30 35 mpbir Old x 𝒫 No
37 nulssgt Old x 𝒫 No Old x s
38 36 37 ax-mp Old x s
39 id x On x On
40 un0 Old x = Old x
41 40 imaeq2i bday Old x = bday Old x
42 oldbdayim y Old x bday y x
43 42 rgen y Old x bday y x
44 43 a1i x On y Old x bday y x
45 30 5 sseqtrri Old x dom bday
46 funimass4 Fun bday Old x dom bday bday Old x x y Old x bday y x
47 1 45 46 mp2an bday Old x x y Old x bday y x
48 44 47 sylibr x On bday Old x x
49 41 48 eqsstrid x On bday Old x x
50 scutbdaybnd Old x s x On bday Old x x bday Old x | s x
51 38 39 49 50 mp3an2i x On bday Old x | s x
52 ssltsep Old x s w y Old x z w y < s z
53 vex w V
54 breq2 z = w y < s z y < s w
55 53 54 ralsn z w y < s z y < s w
56 55 ralbii y Old x z w y < s z y Old x y < s w
57 52 56 sylib Old x s w y Old x y < s w
58 sltirr w No ¬ w < s w
59 58 3ad2ant2 x On w No y Old x y < s w ¬ w < s w
60 oldbday x On w No w Old x bday w x
61 60 3adant3 x On w No y Old x y < s w w Old x bday w x
62 breq1 y = w y < s w w < s w
63 62 rspccv y Old x y < s w w Old x w < s w
64 63 3ad2ant3 x On w No y Old x y < s w w Old x w < s w
65 61 64 sylbird x On w No y Old x y < s w bday w x w < s w
66 59 65 mtod x On w No y Old x y < s w ¬ bday w x
67 simp1 x On w No y Old x y < s w x On
68 bdayelon bday w On
69 ontri1 x On bday w On x bday w ¬ bday w x
70 67 68 69 sylancl x On w No y Old x y < s w x bday w ¬ bday w x
71 66 70 mpbird x On w No y Old x y < s w x bday w
72 71 3expia x On w No y Old x y < s w x bday w
73 57 72 syl5 x On w No Old x s w x bday w
74 73 adantrd x On w No Old x s w w s x bday w
75 74 ralrimiva x On w No Old x s w w s x bday w
76 ssint x bday y No | Old x s y y s z bday y No | Old x s y y s x z
77 bdayfn bday Fn No
78 ssrab2 y No | Old x s y y s No
79 sseq2 z = bday w x z x bday w
80 79 ralima bday Fn No y No | Old x s y y s No z bday y No | Old x s y y s x z w y No | Old x s y y s x bday w
81 77 78 80 mp2an z bday y No | Old x s y y s x z w y No | Old x s y y s x bday w
82 sneq y = w y = w
83 82 breq2d y = w Old x s y Old x s w
84 82 breq1d y = w y s w s
85 83 84 anbi12d y = w Old x s y y s Old x s w w s
86 85 ralrab w y No | Old x s y y s x bday w w No Old x s w w s x bday w
87 76 81 86 3bitri x bday y No | Old x s y y s w No Old x s w w s x bday w
88 75 87 sylibr x On x bday y No | Old x s y y s
89 scutbday Old x s bday Old x | s = bday y No | Old x s y y s
90 38 89 ax-mp bday Old x | s = bday y No | Old x s y y s
91 88 90 sseqtrrdi x On x bday Old x | s
92 51 91 eqssd x On bday Old x | s = x
93 34 92 eqtrd x On bday On s Old x | s = x
94 27 33 93 rspcedvdw x On y On s bday On s y = x
95 fvelrnb bday On s Fn On s x ran bday On s y On s bday On s y = x
96 12 95 ax-mp x ran bday On s y On s bday On s y = x
97 94 96 sylibr x On x ran bday On s
98 97 ssriv On ran bday On s
99 15 98 eqssi ran bday On s = On
100 df-fo bday On s : On s onto On bday On s Fn On s ran bday On s = On
101 12 99 100 mpbir2an bday On s : On s onto On
102 df-f1o bday On s : On s 1-1 onto On bday On s : On s 1-1 On bday On s : On s onto On
103 26 101 102 mpbir2an bday On s : On s 1-1 onto On
104 onslt x On s y On s x < s y bday x bday y
105 fvex bday y V
106 105 epeli bday x E bday y bday x bday y
107 104 106 bitr4di x On s y On s x < s y bday x E bday y
108 18 19 breqan12d x On s y On s bday On s x E bday On s y bday x E bday y
109 107 108 bitr4d x On s y On s x < s y bday On s x E bday On s y
110 109 rgen2 x On s y On s x < s y bday On s x E bday On s y
111 df-isom bday On s Isom < s , E On s On bday On s : On s 1-1 onto On x On s y On s x < s y bday On s x E bday On s y
112 103 110 111 mpbir2an bday On s Isom < s , E On s On