Metamath Proof Explorer


Theorem elons2d

Description: The cut of any set of surreals and the empty set is a surreal ordinal. (Contributed by Scott Fenton, 19-Mar-2025)

Ref Expression
Hypotheses elons2d.1 φ A V
elons2d.2 φ A No
elons2d.3 φ X = A | s
Assertion elons2d φ X On s

Proof

Step Hyp Ref Expression
1 elons2d.1 φ A V
2 elons2d.2 φ A No
3 elons2d.3 φ X = A | s
4 1 2 elpwd φ A 𝒫 No
5 oveq1 a = A a | s = A | s
6 5 eqeq2d a = A X = a | s X = A | s
7 6 rspcev A 𝒫 No X = A | s a 𝒫 No X = a | s
8 4 3 7 syl2anc φ a 𝒫 No X = a | s
9 elons2 X On s a 𝒫 No X = a | s
10 8 9 sylibr φ X On s