Metamath Proof Explorer


Theorem elons2d

Description: The cut of any set of surreals and the empty set is a surreal ordinal. (Contributed by Scott Fenton, 19-Mar-2025)

Ref Expression
Hypotheses elons2d.1 ( 𝜑𝐴𝑉 )
elons2d.2 ( 𝜑𝐴 No )
elons2d.3 ( 𝜑𝑋 = ( 𝐴 |s ∅ ) )
Assertion elons2d ( 𝜑𝑋 ∈ Ons )

Proof

Step Hyp Ref Expression
1 elons2d.1 ( 𝜑𝐴𝑉 )
2 elons2d.2 ( 𝜑𝐴 No )
3 elons2d.3 ( 𝜑𝑋 = ( 𝐴 |s ∅ ) )
4 1 2 elpwd ( 𝜑𝐴 ∈ 𝒫 No )
5 oveq1 ( 𝑎 = 𝐴 → ( 𝑎 |s ∅ ) = ( 𝐴 |s ∅ ) )
6 5 eqeq2d ( 𝑎 = 𝐴 → ( 𝑋 = ( 𝑎 |s ∅ ) ↔ 𝑋 = ( 𝐴 |s ∅ ) ) )
7 6 rspcev ( ( 𝐴 ∈ 𝒫 No 𝑋 = ( 𝐴 |s ∅ ) ) → ∃ 𝑎 ∈ 𝒫 No 𝑋 = ( 𝑎 |s ∅ ) )
8 4 3 7 syl2anc ( 𝜑 → ∃ 𝑎 ∈ 𝒫 No 𝑋 = ( 𝑎 |s ∅ ) )
9 elons2 ( 𝑋 ∈ Ons ↔ ∃ 𝑎 ∈ 𝒫 No 𝑋 = ( 𝑎 |s ∅ ) )
10 8 9 sylibr ( 𝜑𝑋 ∈ Ons )