Description: The cut of any set of surreals and the empty set is a surreal ordinal. (Contributed by Scott Fenton, 19-Mar-2025)
Ref | Expression | ||
---|---|---|---|
Hypotheses | elons2d.1 | ⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) | |
elons2d.2 | ⊢ ( 𝜑 → 𝐴 ⊆ No ) | ||
elons2d.3 | ⊢ ( 𝜑 → 𝑋 = ( 𝐴 |s ∅ ) ) | ||
Assertion | elons2d | ⊢ ( 𝜑 → 𝑋 ∈ Ons ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elons2d.1 | ⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) | |
2 | elons2d.2 | ⊢ ( 𝜑 → 𝐴 ⊆ No ) | |
3 | elons2d.3 | ⊢ ( 𝜑 → 𝑋 = ( 𝐴 |s ∅ ) ) | |
4 | 1 2 | elpwd | ⊢ ( 𝜑 → 𝐴 ∈ 𝒫 No ) |
5 | oveq1 | ⊢ ( 𝑎 = 𝐴 → ( 𝑎 |s ∅ ) = ( 𝐴 |s ∅ ) ) | |
6 | 5 | eqeq2d | ⊢ ( 𝑎 = 𝐴 → ( 𝑋 = ( 𝑎 |s ∅ ) ↔ 𝑋 = ( 𝐴 |s ∅ ) ) ) |
7 | 6 | rspcev | ⊢ ( ( 𝐴 ∈ 𝒫 No ∧ 𝑋 = ( 𝐴 |s ∅ ) ) → ∃ 𝑎 ∈ 𝒫 No 𝑋 = ( 𝑎 |s ∅ ) ) |
8 | 4 3 7 | syl2anc | ⊢ ( 𝜑 → ∃ 𝑎 ∈ 𝒫 No 𝑋 = ( 𝑎 |s ∅ ) ) |
9 | elons2 | ⊢ ( 𝑋 ∈ Ons ↔ ∃ 𝑎 ∈ 𝒫 No 𝑋 = ( 𝑎 |s ∅ ) ) | |
10 | 8 9 | sylibr | ⊢ ( 𝜑 → 𝑋 ∈ Ons ) |