| Step |
Hyp |
Ref |
Expression |
| 1 |
|
elons2d.1 |
|- ( ph -> A e. V ) |
| 2 |
|
elons2d.2 |
|- ( ph -> A C_ No ) |
| 3 |
|
elons2d.3 |
|- ( ph -> X = ( A |s (/) ) ) |
| 4 |
1 2
|
elpwd |
|- ( ph -> A e. ~P No ) |
| 5 |
|
oveq1 |
|- ( a = A -> ( a |s (/) ) = ( A |s (/) ) ) |
| 6 |
5
|
eqeq2d |
|- ( a = A -> ( X = ( a |s (/) ) <-> X = ( A |s (/) ) ) ) |
| 7 |
6
|
rspcev |
|- ( ( A e. ~P No /\ X = ( A |s (/) ) ) -> E. a e. ~P No X = ( a |s (/) ) ) |
| 8 |
4 3 7
|
syl2anc |
|- ( ph -> E. a e. ~P No X = ( a |s (/) ) ) |
| 9 |
|
elons2 |
|- ( X e. On_s <-> E. a e. ~P No X = ( a |s (/) ) ) |
| 10 |
8 9
|
sylibr |
|- ( ph -> X e. On_s ) |