Metamath Proof Explorer


Theorem elons2d

Description: The cut of any set of surreals and the empty set is a surreal ordinal. (Contributed by Scott Fenton, 19-Mar-2025)

Ref Expression
Hypotheses elons2d.1
|- ( ph -> A e. V )
elons2d.2
|- ( ph -> A C_ No )
elons2d.3
|- ( ph -> X = ( A |s (/) ) )
Assertion elons2d
|- ( ph -> X e. On_s )

Proof

Step Hyp Ref Expression
1 elons2d.1
 |-  ( ph -> A e. V )
2 elons2d.2
 |-  ( ph -> A C_ No )
3 elons2d.3
 |-  ( ph -> X = ( A |s (/) ) )
4 1 2 elpwd
 |-  ( ph -> A e. ~P No )
5 oveq1
 |-  ( a = A -> ( a |s (/) ) = ( A |s (/) ) )
6 5 eqeq2d
 |-  ( a = A -> ( X = ( a |s (/) ) <-> X = ( A |s (/) ) ) )
7 6 rspcev
 |-  ( ( A e. ~P No /\ X = ( A |s (/) ) ) -> E. a e. ~P No X = ( a |s (/) ) )
8 4 3 7 syl2anc
 |-  ( ph -> E. a e. ~P No X = ( a |s (/) ) )
9 elons2
 |-  ( X e. On_s <-> E. a e. ~P No X = ( a |s (/) ) )
10 8 9 sylibr
 |-  ( ph -> X e. On_s )