Step |
Hyp |
Ref |
Expression |
1 |
|
leftssno |
⊢ ( L ‘ 𝐴 ) ⊆ No |
2 |
|
fvex |
⊢ ( L ‘ 𝐴 ) ∈ V |
3 |
2
|
elpw |
⊢ ( ( L ‘ 𝐴 ) ∈ 𝒫 No ↔ ( L ‘ 𝐴 ) ⊆ No ) |
4 |
1 3
|
mpbir |
⊢ ( L ‘ 𝐴 ) ∈ 𝒫 No |
5 |
|
onsno |
⊢ ( 𝐴 ∈ Ons → 𝐴 ∈ No ) |
6 |
|
lrcut |
⊢ ( 𝐴 ∈ No → ( ( L ‘ 𝐴 ) |s ( R ‘ 𝐴 ) ) = 𝐴 ) |
7 |
5 6
|
syl |
⊢ ( 𝐴 ∈ Ons → ( ( L ‘ 𝐴 ) |s ( R ‘ 𝐴 ) ) = 𝐴 ) |
8 |
|
elons |
⊢ ( 𝐴 ∈ Ons ↔ ( 𝐴 ∈ No ∧ ( R ‘ 𝐴 ) = ∅ ) ) |
9 |
8
|
simprbi |
⊢ ( 𝐴 ∈ Ons → ( R ‘ 𝐴 ) = ∅ ) |
10 |
9
|
oveq2d |
⊢ ( 𝐴 ∈ Ons → ( ( L ‘ 𝐴 ) |s ( R ‘ 𝐴 ) ) = ( ( L ‘ 𝐴 ) |s ∅ ) ) |
11 |
7 10
|
eqtr3d |
⊢ ( 𝐴 ∈ Ons → 𝐴 = ( ( L ‘ 𝐴 ) |s ∅ ) ) |
12 |
|
oveq1 |
⊢ ( 𝑎 = ( L ‘ 𝐴 ) → ( 𝑎 |s ∅ ) = ( ( L ‘ 𝐴 ) |s ∅ ) ) |
13 |
12
|
rspceeqv |
⊢ ( ( ( L ‘ 𝐴 ) ∈ 𝒫 No ∧ 𝐴 = ( ( L ‘ 𝐴 ) |s ∅ ) ) → ∃ 𝑎 ∈ 𝒫 No 𝐴 = ( 𝑎 |s ∅ ) ) |
14 |
4 11 13
|
sylancr |
⊢ ( 𝐴 ∈ Ons → ∃ 𝑎 ∈ 𝒫 No 𝐴 = ( 𝑎 |s ∅ ) ) |
15 |
|
nulssgt |
⊢ ( 𝑎 ∈ 𝒫 No → 𝑎 <<s ∅ ) |
16 |
15
|
scutcld |
⊢ ( 𝑎 ∈ 𝒫 No → ( 𝑎 |s ∅ ) ∈ No ) |
17 |
|
eqidd |
⊢ ( 𝑎 ∈ 𝒫 No → ( 𝑎 |s ∅ ) = ( 𝑎 |s ∅ ) ) |
18 |
15 17
|
cofcutr2d |
⊢ ( 𝑎 ∈ 𝒫 No → ∀ 𝑥 ∈ ( R ‘ ( 𝑎 |s ∅ ) ) ∃ 𝑦 ∈ ∅ 𝑦 ≤s 𝑥 ) |
19 |
|
rex0 |
⊢ ¬ ∃ 𝑦 ∈ ∅ 𝑦 ≤s 𝑥 |
20 |
|
jcn |
⊢ ( 𝑥 ∈ ( R ‘ ( 𝑎 |s ∅ ) ) → ( ¬ ∃ 𝑦 ∈ ∅ 𝑦 ≤s 𝑥 → ¬ ( 𝑥 ∈ ( R ‘ ( 𝑎 |s ∅ ) ) → ∃ 𝑦 ∈ ∅ 𝑦 ≤s 𝑥 ) ) ) |
21 |
19 20
|
mpi |
⊢ ( 𝑥 ∈ ( R ‘ ( 𝑎 |s ∅ ) ) → ¬ ( 𝑥 ∈ ( R ‘ ( 𝑎 |s ∅ ) ) → ∃ 𝑦 ∈ ∅ 𝑦 ≤s 𝑥 ) ) |
22 |
21
|
con2i |
⊢ ( ( 𝑥 ∈ ( R ‘ ( 𝑎 |s ∅ ) ) → ∃ 𝑦 ∈ ∅ 𝑦 ≤s 𝑥 ) → ¬ 𝑥 ∈ ( R ‘ ( 𝑎 |s ∅ ) ) ) |
23 |
22
|
alimi |
⊢ ( ∀ 𝑥 ( 𝑥 ∈ ( R ‘ ( 𝑎 |s ∅ ) ) → ∃ 𝑦 ∈ ∅ 𝑦 ≤s 𝑥 ) → ∀ 𝑥 ¬ 𝑥 ∈ ( R ‘ ( 𝑎 |s ∅ ) ) ) |
24 |
|
df-ral |
⊢ ( ∀ 𝑥 ∈ ( R ‘ ( 𝑎 |s ∅ ) ) ∃ 𝑦 ∈ ∅ 𝑦 ≤s 𝑥 ↔ ∀ 𝑥 ( 𝑥 ∈ ( R ‘ ( 𝑎 |s ∅ ) ) → ∃ 𝑦 ∈ ∅ 𝑦 ≤s 𝑥 ) ) |
25 |
|
eq0 |
⊢ ( ( R ‘ ( 𝑎 |s ∅ ) ) = ∅ ↔ ∀ 𝑥 ¬ 𝑥 ∈ ( R ‘ ( 𝑎 |s ∅ ) ) ) |
26 |
23 24 25
|
3imtr4i |
⊢ ( ∀ 𝑥 ∈ ( R ‘ ( 𝑎 |s ∅ ) ) ∃ 𝑦 ∈ ∅ 𝑦 ≤s 𝑥 → ( R ‘ ( 𝑎 |s ∅ ) ) = ∅ ) |
27 |
18 26
|
syl |
⊢ ( 𝑎 ∈ 𝒫 No → ( R ‘ ( 𝑎 |s ∅ ) ) = ∅ ) |
28 |
|
elons |
⊢ ( ( 𝑎 |s ∅ ) ∈ Ons ↔ ( ( 𝑎 |s ∅ ) ∈ No ∧ ( R ‘ ( 𝑎 |s ∅ ) ) = ∅ ) ) |
29 |
16 27 28
|
sylanbrc |
⊢ ( 𝑎 ∈ 𝒫 No → ( 𝑎 |s ∅ ) ∈ Ons ) |
30 |
|
eleq1 |
⊢ ( 𝐴 = ( 𝑎 |s ∅ ) → ( 𝐴 ∈ Ons ↔ ( 𝑎 |s ∅ ) ∈ Ons ) ) |
31 |
29 30
|
syl5ibrcom |
⊢ ( 𝑎 ∈ 𝒫 No → ( 𝐴 = ( 𝑎 |s ∅ ) → 𝐴 ∈ Ons ) ) |
32 |
31
|
rexlimiv |
⊢ ( ∃ 𝑎 ∈ 𝒫 No 𝐴 = ( 𝑎 |s ∅ ) → 𝐴 ∈ Ons ) |
33 |
14 32
|
impbii |
⊢ ( 𝐴 ∈ Ons ↔ ∃ 𝑎 ∈ 𝒫 No 𝐴 = ( 𝑎 |s ∅ ) ) |