Metamath Proof Explorer


Theorem elons2

Description: A surreal is ordinal iff it is the cut of some set of surreals and the empty set. Definition from Conway p. 27. (Contributed by Scott Fenton, 19-Mar-2025)

Ref Expression
Assertion elons2 ( 𝐴 ∈ Ons ↔ ∃ 𝑎 ∈ 𝒫 No 𝐴 = ( 𝑎 |s ∅ ) )

Proof

Step Hyp Ref Expression
1 leftssno ( L ‘ 𝐴 ) ⊆ No
2 fvex ( L ‘ 𝐴 ) ∈ V
3 2 elpw ( ( L ‘ 𝐴 ) ∈ 𝒫 No ↔ ( L ‘ 𝐴 ) ⊆ No )
4 1 3 mpbir ( L ‘ 𝐴 ) ∈ 𝒫 No
5 onsno ( 𝐴 ∈ Ons𝐴 No )
6 lrcut ( 𝐴 No → ( ( L ‘ 𝐴 ) |s ( R ‘ 𝐴 ) ) = 𝐴 )
7 5 6 syl ( 𝐴 ∈ Ons → ( ( L ‘ 𝐴 ) |s ( R ‘ 𝐴 ) ) = 𝐴 )
8 elons ( 𝐴 ∈ Ons ↔ ( 𝐴 No ∧ ( R ‘ 𝐴 ) = ∅ ) )
9 8 simprbi ( 𝐴 ∈ Ons → ( R ‘ 𝐴 ) = ∅ )
10 9 oveq2d ( 𝐴 ∈ Ons → ( ( L ‘ 𝐴 ) |s ( R ‘ 𝐴 ) ) = ( ( L ‘ 𝐴 ) |s ∅ ) )
11 7 10 eqtr3d ( 𝐴 ∈ Ons𝐴 = ( ( L ‘ 𝐴 ) |s ∅ ) )
12 oveq1 ( 𝑎 = ( L ‘ 𝐴 ) → ( 𝑎 |s ∅ ) = ( ( L ‘ 𝐴 ) |s ∅ ) )
13 12 rspceeqv ( ( ( L ‘ 𝐴 ) ∈ 𝒫 No 𝐴 = ( ( L ‘ 𝐴 ) |s ∅ ) ) → ∃ 𝑎 ∈ 𝒫 No 𝐴 = ( 𝑎 |s ∅ ) )
14 4 11 13 sylancr ( 𝐴 ∈ Ons → ∃ 𝑎 ∈ 𝒫 No 𝐴 = ( 𝑎 |s ∅ ) )
15 nulssgt ( 𝑎 ∈ 𝒫 No 𝑎 <<s ∅ )
16 15 scutcld ( 𝑎 ∈ 𝒫 No → ( 𝑎 |s ∅ ) ∈ No )
17 eqidd ( 𝑎 ∈ 𝒫 No → ( 𝑎 |s ∅ ) = ( 𝑎 |s ∅ ) )
18 15 17 cofcutr2d ( 𝑎 ∈ 𝒫 No → ∀ 𝑥 ∈ ( R ‘ ( 𝑎 |s ∅ ) ) ∃ 𝑦 ∈ ∅ 𝑦 ≤s 𝑥 )
19 rex0 ¬ ∃ 𝑦 ∈ ∅ 𝑦 ≤s 𝑥
20 jcn ( 𝑥 ∈ ( R ‘ ( 𝑎 |s ∅ ) ) → ( ¬ ∃ 𝑦 ∈ ∅ 𝑦 ≤s 𝑥 → ¬ ( 𝑥 ∈ ( R ‘ ( 𝑎 |s ∅ ) ) → ∃ 𝑦 ∈ ∅ 𝑦 ≤s 𝑥 ) ) )
21 19 20 mpi ( 𝑥 ∈ ( R ‘ ( 𝑎 |s ∅ ) ) → ¬ ( 𝑥 ∈ ( R ‘ ( 𝑎 |s ∅ ) ) → ∃ 𝑦 ∈ ∅ 𝑦 ≤s 𝑥 ) )
22 21 con2i ( ( 𝑥 ∈ ( R ‘ ( 𝑎 |s ∅ ) ) → ∃ 𝑦 ∈ ∅ 𝑦 ≤s 𝑥 ) → ¬ 𝑥 ∈ ( R ‘ ( 𝑎 |s ∅ ) ) )
23 22 alimi ( ∀ 𝑥 ( 𝑥 ∈ ( R ‘ ( 𝑎 |s ∅ ) ) → ∃ 𝑦 ∈ ∅ 𝑦 ≤s 𝑥 ) → ∀ 𝑥 ¬ 𝑥 ∈ ( R ‘ ( 𝑎 |s ∅ ) ) )
24 df-ral ( ∀ 𝑥 ∈ ( R ‘ ( 𝑎 |s ∅ ) ) ∃ 𝑦 ∈ ∅ 𝑦 ≤s 𝑥 ↔ ∀ 𝑥 ( 𝑥 ∈ ( R ‘ ( 𝑎 |s ∅ ) ) → ∃ 𝑦 ∈ ∅ 𝑦 ≤s 𝑥 ) )
25 eq0 ( ( R ‘ ( 𝑎 |s ∅ ) ) = ∅ ↔ ∀ 𝑥 ¬ 𝑥 ∈ ( R ‘ ( 𝑎 |s ∅ ) ) )
26 23 24 25 3imtr4i ( ∀ 𝑥 ∈ ( R ‘ ( 𝑎 |s ∅ ) ) ∃ 𝑦 ∈ ∅ 𝑦 ≤s 𝑥 → ( R ‘ ( 𝑎 |s ∅ ) ) = ∅ )
27 18 26 syl ( 𝑎 ∈ 𝒫 No → ( R ‘ ( 𝑎 |s ∅ ) ) = ∅ )
28 elons ( ( 𝑎 |s ∅ ) ∈ Ons ↔ ( ( 𝑎 |s ∅ ) ∈ No ∧ ( R ‘ ( 𝑎 |s ∅ ) ) = ∅ ) )
29 16 27 28 sylanbrc ( 𝑎 ∈ 𝒫 No → ( 𝑎 |s ∅ ) ∈ Ons )
30 eleq1 ( 𝐴 = ( 𝑎 |s ∅ ) → ( 𝐴 ∈ Ons ↔ ( 𝑎 |s ∅ ) ∈ Ons ) )
31 29 30 syl5ibrcom ( 𝑎 ∈ 𝒫 No → ( 𝐴 = ( 𝑎 |s ∅ ) → 𝐴 ∈ Ons ) )
32 31 rexlimiv ( ∃ 𝑎 ∈ 𝒫 No 𝐴 = ( 𝑎 |s ∅ ) → 𝐴 ∈ Ons )
33 14 32 impbii ( 𝐴 ∈ Ons ↔ ∃ 𝑎 ∈ 𝒫 No 𝐴 = ( 𝑎 |s ∅ ) )