| Step |
Hyp |
Ref |
Expression |
| 1 |
|
id |
|- ( H Isom R , S ( A , B ) -> H Isom R , S ( A , B ) ) |
| 2 |
|
isof1o |
|- ( H Isom R , S ( A , B ) -> H : A -1-1-onto-> B ) |
| 3 |
|
f1ofun |
|- ( H : A -1-1-onto-> B -> Fun H ) |
| 4 |
|
vex |
|- x e. _V |
| 5 |
4
|
funimaex |
|- ( Fun H -> ( H " x ) e. _V ) |
| 6 |
2 3 5
|
3syl |
|- ( H Isom R , S ( A , B ) -> ( H " x ) e. _V ) |
| 7 |
1 6
|
isoselem |
|- ( H Isom R , S ( A , B ) -> ( R Se A -> S Se B ) ) |
| 8 |
|
isocnv |
|- ( H Isom R , S ( A , B ) -> `' H Isom S , R ( B , A ) ) |
| 9 |
|
isof1o |
|- ( `' H Isom S , R ( B , A ) -> `' H : B -1-1-onto-> A ) |
| 10 |
|
f1ofun |
|- ( `' H : B -1-1-onto-> A -> Fun `' H ) |
| 11 |
4
|
funimaex |
|- ( Fun `' H -> ( `' H " x ) e. _V ) |
| 12 |
8 9 10 11
|
4syl |
|- ( H Isom R , S ( A , B ) -> ( `' H " x ) e. _V ) |
| 13 |
8 12
|
isoselem |
|- ( H Isom R , S ( A , B ) -> ( S Se B -> R Se A ) ) |
| 14 |
7 13
|
impbid |
|- ( H Isom R , S ( A , B ) -> ( R Se A <-> S Se B ) ) |