Metamath Proof Explorer


Theorem isose

Description: An isomorphism preserves set-like relations. (Contributed by Mario Carneiro, 23-Jun-2015)

Ref Expression
Assertion isose HIsomR,SABRSeASSeB

Proof

Step Hyp Ref Expression
1 id HIsomR,SABHIsomR,SAB
2 isof1o HIsomR,SABH:A1-1 ontoB
3 f1ofun H:A1-1 ontoBFunH
4 vex xV
5 4 funimaex FunHHxV
6 2 3 5 3syl HIsomR,SABHxV
7 1 6 isoselem HIsomR,SABRSeASSeB
8 isocnv HIsomR,SABH-1IsomS,RBA
9 isof1o H-1IsomS,RBAH-1:B1-1 ontoA
10 f1ofun H-1:B1-1 ontoAFunH-1
11 4 funimaex FunH-1H-1xV
12 8 9 10 11 4syl HIsomR,SABH-1xV
13 8 12 isoselem HIsomR,SABSSeBRSeA
14 7 13 impbid HIsomR,SABRSeASSeB