Metamath Proof Explorer


Theorem isoselem

Description: Lemma for isose . (Contributed by Mario Carneiro, 23-Jun-2015)

Ref Expression
Hypotheses isofrlem.1 φHIsomR,SAB
isofrlem.2 φHxV
Assertion isoselem φRSeASSeB

Proof

Step Hyp Ref Expression
1 isofrlem.1 φHIsomR,SAB
2 isofrlem.2 φHxV
3 dfse2 RSeAzAAR-1zV
4 3 biimpi RSeAzAAR-1zV
5 4 r19.21bi RSeAzAAR-1zV
6 5 expcom zARSeAAR-1zV
7 6 adantl φzARSeAAR-1zV
8 imaeq2 x=AR-1zHx=HAR-1z
9 8 eleq1d x=AR-1zHxVHAR-1zV
10 9 imbi2d x=AR-1zφHxVφHAR-1zV
11 10 2 vtoclg AR-1zVφHAR-1zV
12 11 com12 φAR-1zVHAR-1zV
13 12 adantr φzAAR-1zVHAR-1zV
14 isoini HIsomR,SABzAHAR-1z=BS-1Hz
15 1 14 sylan φzAHAR-1z=BS-1Hz
16 15 eleq1d φzAHAR-1zVBS-1HzV
17 13 16 sylibd φzAAR-1zVBS-1HzV
18 7 17 syld φzARSeABS-1HzV
19 18 ralrimdva φRSeAzABS-1HzV
20 isof1o HIsomR,SABH:A1-1 ontoB
21 f1ofn H:A1-1 ontoBHFnA
22 sneq y=Hzy=Hz
23 22 imaeq2d y=HzS-1y=S-1Hz
24 23 ineq2d y=HzBS-1y=BS-1Hz
25 24 eleq1d y=HzBS-1yVBS-1HzV
26 25 ralrn HFnAyranHBS-1yVzABS-1HzV
27 1 20 21 26 4syl φyranHBS-1yVzABS-1HzV
28 f1ofo H:A1-1 ontoBH:AontoB
29 forn H:AontoBranH=B
30 1 20 28 29 4syl φranH=B
31 30 raleqdv φyranHBS-1yVyBBS-1yV
32 27 31 bitr3d φzABS-1HzVyBBS-1yV
33 19 32 sylibd φRSeAyBBS-1yV
34 dfse2 SSeByBBS-1yV
35 33 34 imbitrrdi φRSeASSeB