Metamath Proof Explorer


Theorem onsis

Description: Transfinite induction schema for surreal ordinals. (Contributed by Scott Fenton, 6-Nov-2025)

Ref Expression
Hypotheses onsis.1 ( 𝑥 = 𝑦 → ( 𝜑𝜓 ) )
onsis.2 ( 𝑥 = 𝐴 → ( 𝜑𝜒 ) )
onsis.3 ( 𝑥 ∈ Ons → ( ∀ 𝑦 ∈ Ons ( 𝑦 <s 𝑥𝜓 ) → 𝜑 ) )
Assertion onsis ( 𝐴 ∈ Ons𝜒 )

Proof

Step Hyp Ref Expression
1 onsis.1 ( 𝑥 = 𝑦 → ( 𝜑𝜓 ) )
2 onsis.2 ( 𝑥 = 𝐴 → ( 𝜑𝜒 ) )
3 onsis.3 ( 𝑥 ∈ Ons → ( ∀ 𝑦 ∈ Ons ( 𝑦 <s 𝑥𝜓 ) → 𝜑 ) )
4 onswe <s We Ons
5 onsse <s Se Ons
6 vex 𝑦 ∈ V
7 6 elpred ( 𝑥 ∈ V → ( 𝑦 ∈ Pred ( <s , Ons , 𝑥 ) ↔ ( 𝑦 ∈ Ons𝑦 <s 𝑥 ) ) )
8 7 elv ( 𝑦 ∈ Pred ( <s , Ons , 𝑥 ) ↔ ( 𝑦 ∈ Ons𝑦 <s 𝑥 ) )
9 8 imbi1i ( ( 𝑦 ∈ Pred ( <s , Ons , 𝑥 ) → 𝜓 ) ↔ ( ( 𝑦 ∈ Ons𝑦 <s 𝑥 ) → 𝜓 ) )
10 impexp ( ( ( 𝑦 ∈ Ons𝑦 <s 𝑥 ) → 𝜓 ) ↔ ( 𝑦 ∈ Ons → ( 𝑦 <s 𝑥𝜓 ) ) )
11 9 10 bitri ( ( 𝑦 ∈ Pred ( <s , Ons , 𝑥 ) → 𝜓 ) ↔ ( 𝑦 ∈ Ons → ( 𝑦 <s 𝑥𝜓 ) ) )
12 11 ralbii2 ( ∀ 𝑦 ∈ Pred ( <s , Ons , 𝑥 ) 𝜓 ↔ ∀ 𝑦 ∈ Ons ( 𝑦 <s 𝑥𝜓 ) )
13 12 3 biimtrid ( 𝑥 ∈ Ons → ( ∀ 𝑦 ∈ Pred ( <s , Ons , 𝑥 ) 𝜓𝜑 ) )
14 4 5 1 2 13 wfis3 ( 𝐴 ∈ Ons𝜒 )