| Step |
Hyp |
Ref |
Expression |
| 1 |
|
onsis.1 |
⊢ ( 𝑥 = 𝑦 → ( 𝜑 ↔ 𝜓 ) ) |
| 2 |
|
onsis.2 |
⊢ ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜒 ) ) |
| 3 |
|
onsis.3 |
⊢ ( 𝑥 ∈ Ons → ( ∀ 𝑦 ∈ Ons ( 𝑦 <s 𝑥 → 𝜓 ) → 𝜑 ) ) |
| 4 |
|
onswe |
⊢ <s We Ons |
| 5 |
|
onsse |
⊢ <s Se Ons |
| 6 |
|
vex |
⊢ 𝑦 ∈ V |
| 7 |
6
|
elpred |
⊢ ( 𝑥 ∈ V → ( 𝑦 ∈ Pred ( <s , Ons , 𝑥 ) ↔ ( 𝑦 ∈ Ons ∧ 𝑦 <s 𝑥 ) ) ) |
| 8 |
7
|
elv |
⊢ ( 𝑦 ∈ Pred ( <s , Ons , 𝑥 ) ↔ ( 𝑦 ∈ Ons ∧ 𝑦 <s 𝑥 ) ) |
| 9 |
8
|
imbi1i |
⊢ ( ( 𝑦 ∈ Pred ( <s , Ons , 𝑥 ) → 𝜓 ) ↔ ( ( 𝑦 ∈ Ons ∧ 𝑦 <s 𝑥 ) → 𝜓 ) ) |
| 10 |
|
impexp |
⊢ ( ( ( 𝑦 ∈ Ons ∧ 𝑦 <s 𝑥 ) → 𝜓 ) ↔ ( 𝑦 ∈ Ons → ( 𝑦 <s 𝑥 → 𝜓 ) ) ) |
| 11 |
9 10
|
bitri |
⊢ ( ( 𝑦 ∈ Pred ( <s , Ons , 𝑥 ) → 𝜓 ) ↔ ( 𝑦 ∈ Ons → ( 𝑦 <s 𝑥 → 𝜓 ) ) ) |
| 12 |
11
|
ralbii2 |
⊢ ( ∀ 𝑦 ∈ Pred ( <s , Ons , 𝑥 ) 𝜓 ↔ ∀ 𝑦 ∈ Ons ( 𝑦 <s 𝑥 → 𝜓 ) ) |
| 13 |
12 3
|
biimtrid |
⊢ ( 𝑥 ∈ Ons → ( ∀ 𝑦 ∈ Pred ( <s , Ons , 𝑥 ) 𝜓 → 𝜑 ) ) |
| 14 |
4 5 1 2 13
|
wfis3 |
⊢ ( 𝐴 ∈ Ons → 𝜒 ) |