Metamath Proof Explorer
Description: A comparison law for surreals considered as cuts of sets of surreals.
(Contributed by Scott Fenton, 5-Dec-2025)
|
|
Ref |
Expression |
|
Hypotheses |
sltrecd.1 |
⊢ ( 𝜑 → 𝐴 <<s 𝐵 ) |
|
|
sltrecd.2 |
⊢ ( 𝜑 → 𝐶 <<s 𝐷 ) |
|
|
sltrecd.3 |
⊢ ( 𝜑 → 𝑋 = ( 𝐴 |s 𝐵 ) ) |
|
|
sltrecd.4 |
⊢ ( 𝜑 → 𝑌 = ( 𝐶 |s 𝐷 ) ) |
|
Assertion |
sltrecd |
⊢ ( 𝜑 → ( 𝑋 <s 𝑌 ↔ ( ∃ 𝑐 ∈ 𝐶 𝑋 ≤s 𝑐 ∨ ∃ 𝑏 ∈ 𝐵 𝑏 ≤s 𝑌 ) ) ) |
Proof
| Step |
Hyp |
Ref |
Expression |
| 1 |
|
sltrecd.1 |
⊢ ( 𝜑 → 𝐴 <<s 𝐵 ) |
| 2 |
|
sltrecd.2 |
⊢ ( 𝜑 → 𝐶 <<s 𝐷 ) |
| 3 |
|
sltrecd.3 |
⊢ ( 𝜑 → 𝑋 = ( 𝐴 |s 𝐵 ) ) |
| 4 |
|
sltrecd.4 |
⊢ ( 𝜑 → 𝑌 = ( 𝐶 |s 𝐷 ) ) |
| 5 |
|
sltrec |
⊢ ( ( ( 𝐴 <<s 𝐵 ∧ 𝐶 <<s 𝐷 ) ∧ ( 𝑋 = ( 𝐴 |s 𝐵 ) ∧ 𝑌 = ( 𝐶 |s 𝐷 ) ) ) → ( 𝑋 <s 𝑌 ↔ ( ∃ 𝑐 ∈ 𝐶 𝑋 ≤s 𝑐 ∨ ∃ 𝑏 ∈ 𝐵 𝑏 ≤s 𝑌 ) ) ) |
| 6 |
1 2 3 4 5
|
syl22anc |
⊢ ( 𝜑 → ( 𝑋 <s 𝑌 ↔ ( ∃ 𝑐 ∈ 𝐶 𝑋 ≤s 𝑐 ∨ ∃ 𝑏 ∈ 𝐵 𝑏 ≤s 𝑌 ) ) ) |