Metamath Proof Explorer


Theorem sltrecd

Description: A comparison law for surreals considered as cuts of sets of surreals. (Contributed by Scott Fenton, 5-Dec-2025)

Ref Expression
Hypotheses sltrecd.1 ( 𝜑𝐴 <<s 𝐵 )
sltrecd.2 ( 𝜑𝐶 <<s 𝐷 )
sltrecd.3 ( 𝜑𝑋 = ( 𝐴 |s 𝐵 ) )
sltrecd.4 ( 𝜑𝑌 = ( 𝐶 |s 𝐷 ) )
Assertion sltrecd ( 𝜑 → ( 𝑋 <s 𝑌 ↔ ( ∃ 𝑐𝐶 𝑋 ≤s 𝑐 ∨ ∃ 𝑏𝐵 𝑏 ≤s 𝑌 ) ) )

Proof

Step Hyp Ref Expression
1 sltrecd.1 ( 𝜑𝐴 <<s 𝐵 )
2 sltrecd.2 ( 𝜑𝐶 <<s 𝐷 )
3 sltrecd.3 ( 𝜑𝑋 = ( 𝐴 |s 𝐵 ) )
4 sltrecd.4 ( 𝜑𝑌 = ( 𝐶 |s 𝐷 ) )
5 sltrec ( ( ( 𝐴 <<s 𝐵𝐶 <<s 𝐷 ) ∧ ( 𝑋 = ( 𝐴 |s 𝐵 ) ∧ 𝑌 = ( 𝐶 |s 𝐷 ) ) ) → ( 𝑋 <s 𝑌 ↔ ( ∃ 𝑐𝐶 𝑋 ≤s 𝑐 ∨ ∃ 𝑏𝐵 𝑏 ≤s 𝑌 ) ) )
6 1 2 3 4 5 syl22anc ( 𝜑 → ( 𝑋 <s 𝑌 ↔ ( ∃ 𝑐𝐶 𝑋 ≤s 𝑐 ∨ ∃ 𝑏𝐵 𝑏 ≤s 𝑌 ) ) )