Metamath Proof Explorer


Theorem sltrecd

Description: A comparison law for surreals considered as cuts of sets of surreals. (Contributed by Scott Fenton, 5-Dec-2025)

Ref Expression
Hypotheses sltrecd.1
|- ( ph -> A <
sltrecd.2
|- ( ph -> C <
sltrecd.3
|- ( ph -> X = ( A |s B ) )
sltrecd.4
|- ( ph -> Y = ( C |s D ) )
Assertion sltrecd
|- ( ph -> ( X  ( E. c e. C X <_s c \/ E. b e. B b <_s Y ) ) )

Proof

Step Hyp Ref Expression
1 sltrecd.1
 |-  ( ph -> A <
2 sltrecd.2
 |-  ( ph -> C <
3 sltrecd.3
 |-  ( ph -> X = ( A |s B ) )
4 sltrecd.4
 |-  ( ph -> Y = ( C |s D ) )
5 sltrec
 |-  ( ( ( A < ( X  ( E. c e. C X <_s c \/ E. b e. B b <_s Y ) ) )
6 1 2 3 4 5 syl22anc
 |-  ( ph -> ( X  ( E. c e. C X <_s c \/ E. b e. B b <_s Y ) ) )