Metamath Proof Explorer


Theorem ssltdisj

Description: If A preceeds B , then A and B are disjoint. (Contributed by Scott Fenton, 18-Sep-2024)

Ref Expression
Assertion ssltdisj
|- ( A < ( A i^i B ) = (/) )

Proof

Step Hyp Ref Expression
1 ssltss1
 |-  ( A < A C_ No )
2 1 sselda
 |-  ( ( A < x e. No )
3 sltirr
 |-  ( x e. No -> -. x 
4 2 3 syl
 |-  ( ( A < -. x 
5 ssltsepc
 |-  ( ( A < x 
6 5 3expa
 |-  ( ( ( A < x 
7 4 6 mtand
 |-  ( ( A < -. x e. B )
8 7 ralrimiva
 |-  ( A < A. x e. A -. x e. B )
9 disj
 |-  ( ( A i^i B ) = (/) <-> A. x e. A -. x e. B )
10 8 9 sylibr
 |-  ( A < ( A i^i B ) = (/) )