Metamath Proof Explorer


Theorem ssltdisj

Description: If A preceeds B , then A and B are disjoint. (Contributed by Scott Fenton, 18-Sep-2024)

Ref Expression
Assertion ssltdisj A s B A B =

Proof

Step Hyp Ref Expression
1 ssltss1 A s B A No
2 1 sselda A s B x A x No
3 sltirr x No ¬ x < s x
4 2 3 syl A s B x A ¬ x < s x
5 ssltsepc A s B x A x B x < s x
6 5 3expa A s B x A x B x < s x
7 4 6 mtand A s B x A ¬ x B
8 7 ralrimiva A s B x A ¬ x B
9 disj A B = x A ¬ x B
10 8 9 sylibr A s B A B =