Metamath Proof Explorer


Theorem ssltdisj

Description: If A preceeds B , then A and B are disjoint. (Contributed by Scott Fenton, 18-Sep-2024)

Ref Expression
Assertion ssltdisj ( 𝐴 <<s 𝐵 → ( 𝐴𝐵 ) = ∅ )

Proof

Step Hyp Ref Expression
1 ssltss1 ( 𝐴 <<s 𝐵𝐴 No )
2 1 sselda ( ( 𝐴 <<s 𝐵𝑥𝐴 ) → 𝑥 No )
3 sltirr ( 𝑥 No → ¬ 𝑥 <s 𝑥 )
4 2 3 syl ( ( 𝐴 <<s 𝐵𝑥𝐴 ) → ¬ 𝑥 <s 𝑥 )
5 ssltsepc ( ( 𝐴 <<s 𝐵𝑥𝐴𝑥𝐵 ) → 𝑥 <s 𝑥 )
6 5 3expa ( ( ( 𝐴 <<s 𝐵𝑥𝐴 ) ∧ 𝑥𝐵 ) → 𝑥 <s 𝑥 )
7 4 6 mtand ( ( 𝐴 <<s 𝐵𝑥𝐴 ) → ¬ 𝑥𝐵 )
8 7 ralrimiva ( 𝐴 <<s 𝐵 → ∀ 𝑥𝐴 ¬ 𝑥𝐵 )
9 disj ( ( 𝐴𝐵 ) = ∅ ↔ ∀ 𝑥𝐴 ¬ 𝑥𝐵 )
10 8 9 sylibr ( 𝐴 <<s 𝐵 → ( 𝐴𝐵 ) = ∅ )