Description: If A preceeds B , then A and B are disjoint. (Contributed by Scott Fenton, 18-Sep-2024)
Ref | Expression | ||
---|---|---|---|
Assertion | ssltdisj | ⊢ ( 𝐴 <<s 𝐵 → ( 𝐴 ∩ 𝐵 ) = ∅ ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssltss1 | ⊢ ( 𝐴 <<s 𝐵 → 𝐴 ⊆ No ) | |
2 | 1 | sselda | ⊢ ( ( 𝐴 <<s 𝐵 ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ∈ No ) |
3 | sltirr | ⊢ ( 𝑥 ∈ No → ¬ 𝑥 <s 𝑥 ) | |
4 | 2 3 | syl | ⊢ ( ( 𝐴 <<s 𝐵 ∧ 𝑥 ∈ 𝐴 ) → ¬ 𝑥 <s 𝑥 ) |
5 | ssltsepc | ⊢ ( ( 𝐴 <<s 𝐵 ∧ 𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵 ) → 𝑥 <s 𝑥 ) | |
6 | 5 | 3expa | ⊢ ( ( ( 𝐴 <<s 𝐵 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑥 ∈ 𝐵 ) → 𝑥 <s 𝑥 ) |
7 | 4 6 | mtand | ⊢ ( ( 𝐴 <<s 𝐵 ∧ 𝑥 ∈ 𝐴 ) → ¬ 𝑥 ∈ 𝐵 ) |
8 | 7 | ralrimiva | ⊢ ( 𝐴 <<s 𝐵 → ∀ 𝑥 ∈ 𝐴 ¬ 𝑥 ∈ 𝐵 ) |
9 | disj | ⊢ ( ( 𝐴 ∩ 𝐵 ) = ∅ ↔ ∀ 𝑥 ∈ 𝐴 ¬ 𝑥 ∈ 𝐵 ) | |
10 | 8 9 | sylibr | ⊢ ( 𝐴 <<s 𝐵 → ( 𝐴 ∩ 𝐵 ) = ∅ ) |