Metamath Proof Explorer


Theorem lltropt

Description: The left options of a surreal are strictly less than the right options of the same surreal. (Contributed by Scott Fenton, 6-Aug-2024)

Ref Expression
Assertion lltropt ( 𝐴 No → ( L ‘ 𝐴 ) <<s ( R ‘ 𝐴 ) )

Proof

Step Hyp Ref Expression
1 ssltleft ( 𝐴 No → ( L ‘ 𝐴 ) <<s { 𝐴 } )
2 ssltright ( 𝐴 No → { 𝐴 } <<s ( R ‘ 𝐴 ) )
3 snnzg ( 𝐴 No → { 𝐴 } ≠ ∅ )
4 sslttr ( ( ( L ‘ 𝐴 ) <<s { 𝐴 } ∧ { 𝐴 } <<s ( R ‘ 𝐴 ) ∧ { 𝐴 } ≠ ∅ ) → ( L ‘ 𝐴 ) <<s ( R ‘ 𝐴 ) )
5 1 2 3 4 syl3anc ( 𝐴 No → ( L ‘ 𝐴 ) <<s ( R ‘ 𝐴 ) )