Step |
Hyp |
Ref |
Expression |
1 |
|
0elon |
⊢ ∅ ∈ On |
2 |
|
madeval2 |
⊢ ( ∅ ∈ On → ( M ‘ ∅ ) = { 𝑥 ∈ No ∣ ∃ 𝑙 ∈ 𝒫 ∪ ( M “ ∅ ) ∃ 𝑟 ∈ 𝒫 ∪ ( M “ ∅ ) ( 𝑙 <<s 𝑟 ∧ ( 𝑙 |s 𝑟 ) = 𝑥 ) } ) |
3 |
1 2
|
ax-mp |
⊢ ( M ‘ ∅ ) = { 𝑥 ∈ No ∣ ∃ 𝑙 ∈ 𝒫 ∪ ( M “ ∅ ) ∃ 𝑟 ∈ 𝒫 ∪ ( M “ ∅ ) ( 𝑙 <<s 𝑟 ∧ ( 𝑙 |s 𝑟 ) = 𝑥 ) } |
4 |
|
rabeqsn |
⊢ ( { 𝑥 ∈ No ∣ ∃ 𝑙 ∈ 𝒫 ∪ ( M “ ∅ ) ∃ 𝑟 ∈ 𝒫 ∪ ( M “ ∅ ) ( 𝑙 <<s 𝑟 ∧ ( 𝑙 |s 𝑟 ) = 𝑥 ) } = { 0s } ↔ ∀ 𝑥 ( ( 𝑥 ∈ No ∧ ∃ 𝑙 ∈ 𝒫 ∪ ( M “ ∅ ) ∃ 𝑟 ∈ 𝒫 ∪ ( M “ ∅ ) ( 𝑙 <<s 𝑟 ∧ ( 𝑙 |s 𝑟 ) = 𝑥 ) ) ↔ 𝑥 = 0s ) ) |
5 |
|
0elpw |
⊢ ∅ ∈ 𝒫 No |
6 |
|
nulssgt |
⊢ ( ∅ ∈ 𝒫 No → ∅ <<s ∅ ) |
7 |
5 6
|
ax-mp |
⊢ ∅ <<s ∅ |
8 |
|
ima0 |
⊢ ( M “ ∅ ) = ∅ |
9 |
8
|
unieqi |
⊢ ∪ ( M “ ∅ ) = ∪ ∅ |
10 |
|
uni0 |
⊢ ∪ ∅ = ∅ |
11 |
9 10
|
eqtri |
⊢ ∪ ( M “ ∅ ) = ∅ |
12 |
11
|
pweqi |
⊢ 𝒫 ∪ ( M “ ∅ ) = 𝒫 ∅ |
13 |
|
pw0 |
⊢ 𝒫 ∅ = { ∅ } |
14 |
12 13
|
eqtri |
⊢ 𝒫 ∪ ( M “ ∅ ) = { ∅ } |
15 |
14
|
rexeqi |
⊢ ( ∃ 𝑙 ∈ 𝒫 ∪ ( M “ ∅ ) ∃ 𝑟 ∈ 𝒫 ∪ ( M “ ∅ ) ( 𝑙 <<s 𝑟 ∧ ( 𝑙 |s 𝑟 ) = 𝑥 ) ↔ ∃ 𝑙 ∈ { ∅ } ∃ 𝑟 ∈ 𝒫 ∪ ( M “ ∅ ) ( 𝑙 <<s 𝑟 ∧ ( 𝑙 |s 𝑟 ) = 𝑥 ) ) |
16 |
14
|
rexeqi |
⊢ ( ∃ 𝑟 ∈ 𝒫 ∪ ( M “ ∅ ) ( 𝑙 <<s 𝑟 ∧ ( 𝑙 |s 𝑟 ) = 𝑥 ) ↔ ∃ 𝑟 ∈ { ∅ } ( 𝑙 <<s 𝑟 ∧ ( 𝑙 |s 𝑟 ) = 𝑥 ) ) |
17 |
16
|
rexbii |
⊢ ( ∃ 𝑙 ∈ { ∅ } ∃ 𝑟 ∈ 𝒫 ∪ ( M “ ∅ ) ( 𝑙 <<s 𝑟 ∧ ( 𝑙 |s 𝑟 ) = 𝑥 ) ↔ ∃ 𝑙 ∈ { ∅ } ∃ 𝑟 ∈ { ∅ } ( 𝑙 <<s 𝑟 ∧ ( 𝑙 |s 𝑟 ) = 𝑥 ) ) |
18 |
|
0ex |
⊢ ∅ ∈ V |
19 |
|
breq2 |
⊢ ( 𝑟 = ∅ → ( 𝑙 <<s 𝑟 ↔ 𝑙 <<s ∅ ) ) |
20 |
|
oveq2 |
⊢ ( 𝑟 = ∅ → ( 𝑙 |s 𝑟 ) = ( 𝑙 |s ∅ ) ) |
21 |
20
|
eqeq1d |
⊢ ( 𝑟 = ∅ → ( ( 𝑙 |s 𝑟 ) = 𝑥 ↔ ( 𝑙 |s ∅ ) = 𝑥 ) ) |
22 |
19 21
|
anbi12d |
⊢ ( 𝑟 = ∅ → ( ( 𝑙 <<s 𝑟 ∧ ( 𝑙 |s 𝑟 ) = 𝑥 ) ↔ ( 𝑙 <<s ∅ ∧ ( 𝑙 |s ∅ ) = 𝑥 ) ) ) |
23 |
18 22
|
rexsn |
⊢ ( ∃ 𝑟 ∈ { ∅ } ( 𝑙 <<s 𝑟 ∧ ( 𝑙 |s 𝑟 ) = 𝑥 ) ↔ ( 𝑙 <<s ∅ ∧ ( 𝑙 |s ∅ ) = 𝑥 ) ) |
24 |
23
|
rexbii |
⊢ ( ∃ 𝑙 ∈ { ∅ } ∃ 𝑟 ∈ { ∅ } ( 𝑙 <<s 𝑟 ∧ ( 𝑙 |s 𝑟 ) = 𝑥 ) ↔ ∃ 𝑙 ∈ { ∅ } ( 𝑙 <<s ∅ ∧ ( 𝑙 |s ∅ ) = 𝑥 ) ) |
25 |
|
breq1 |
⊢ ( 𝑙 = ∅ → ( 𝑙 <<s ∅ ↔ ∅ <<s ∅ ) ) |
26 |
|
oveq1 |
⊢ ( 𝑙 = ∅ → ( 𝑙 |s ∅ ) = ( ∅ |s ∅ ) ) |
27 |
26
|
eqeq1d |
⊢ ( 𝑙 = ∅ → ( ( 𝑙 |s ∅ ) = 𝑥 ↔ ( ∅ |s ∅ ) = 𝑥 ) ) |
28 |
25 27
|
anbi12d |
⊢ ( 𝑙 = ∅ → ( ( 𝑙 <<s ∅ ∧ ( 𝑙 |s ∅ ) = 𝑥 ) ↔ ( ∅ <<s ∅ ∧ ( ∅ |s ∅ ) = 𝑥 ) ) ) |
29 |
18 28
|
rexsn |
⊢ ( ∃ 𝑙 ∈ { ∅ } ( 𝑙 <<s ∅ ∧ ( 𝑙 |s ∅ ) = 𝑥 ) ↔ ( ∅ <<s ∅ ∧ ( ∅ |s ∅ ) = 𝑥 ) ) |
30 |
24 29
|
bitri |
⊢ ( ∃ 𝑙 ∈ { ∅ } ∃ 𝑟 ∈ { ∅ } ( 𝑙 <<s 𝑟 ∧ ( 𝑙 |s 𝑟 ) = 𝑥 ) ↔ ( ∅ <<s ∅ ∧ ( ∅ |s ∅ ) = 𝑥 ) ) |
31 |
15 17 30
|
3bitri |
⊢ ( ∃ 𝑙 ∈ 𝒫 ∪ ( M “ ∅ ) ∃ 𝑟 ∈ 𝒫 ∪ ( M “ ∅ ) ( 𝑙 <<s 𝑟 ∧ ( 𝑙 |s 𝑟 ) = 𝑥 ) ↔ ( ∅ <<s ∅ ∧ ( ∅ |s ∅ ) = 𝑥 ) ) |
32 |
7 31
|
mpbiran |
⊢ ( ∃ 𝑙 ∈ 𝒫 ∪ ( M “ ∅ ) ∃ 𝑟 ∈ 𝒫 ∪ ( M “ ∅ ) ( 𝑙 <<s 𝑟 ∧ ( 𝑙 |s 𝑟 ) = 𝑥 ) ↔ ( ∅ |s ∅ ) = 𝑥 ) |
33 |
|
df-0s |
⊢ 0s = ( ∅ |s ∅ ) |
34 |
33
|
eqeq1i |
⊢ ( 0s = 𝑥 ↔ ( ∅ |s ∅ ) = 𝑥 ) |
35 |
|
eqcom |
⊢ ( 0s = 𝑥 ↔ 𝑥 = 0s ) |
36 |
32 34 35
|
3bitr2i |
⊢ ( ∃ 𝑙 ∈ 𝒫 ∪ ( M “ ∅ ) ∃ 𝑟 ∈ 𝒫 ∪ ( M “ ∅ ) ( 𝑙 <<s 𝑟 ∧ ( 𝑙 |s 𝑟 ) = 𝑥 ) ↔ 𝑥 = 0s ) |
37 |
36
|
anbi2i |
⊢ ( ( 𝑥 ∈ No ∧ ∃ 𝑙 ∈ 𝒫 ∪ ( M “ ∅ ) ∃ 𝑟 ∈ 𝒫 ∪ ( M “ ∅ ) ( 𝑙 <<s 𝑟 ∧ ( 𝑙 |s 𝑟 ) = 𝑥 ) ) ↔ ( 𝑥 ∈ No ∧ 𝑥 = 0s ) ) |
38 |
|
0sno |
⊢ 0s ∈ No |
39 |
|
eleq1 |
⊢ ( 𝑥 = 0s → ( 𝑥 ∈ No ↔ 0s ∈ No ) ) |
40 |
38 39
|
mpbiri |
⊢ ( 𝑥 = 0s → 𝑥 ∈ No ) |
41 |
40
|
pm4.71ri |
⊢ ( 𝑥 = 0s ↔ ( 𝑥 ∈ No ∧ 𝑥 = 0s ) ) |
42 |
37 41
|
bitr4i |
⊢ ( ( 𝑥 ∈ No ∧ ∃ 𝑙 ∈ 𝒫 ∪ ( M “ ∅ ) ∃ 𝑟 ∈ 𝒫 ∪ ( M “ ∅ ) ( 𝑙 <<s 𝑟 ∧ ( 𝑙 |s 𝑟 ) = 𝑥 ) ) ↔ 𝑥 = 0s ) |
43 |
4 42
|
mpgbir |
⊢ { 𝑥 ∈ No ∣ ∃ 𝑙 ∈ 𝒫 ∪ ( M “ ∅ ) ∃ 𝑟 ∈ 𝒫 ∪ ( M “ ∅ ) ( 𝑙 <<s 𝑟 ∧ ( 𝑙 |s 𝑟 ) = 𝑥 ) } = { 0s } |
44 |
3 43
|
eqtri |
⊢ ( M ‘ ∅ ) = { 0s } |