Metamath Proof Explorer


Theorem made0

Description: The only surreal made on day (/) is 0s . (Contributed by Scott Fenton, 7-Aug-2024)

Ref Expression
Assertion made0 ( M ‘ ∅ ) = { 0s }

Proof

Step Hyp Ref Expression
1 0elon ∅ ∈ On
2 madeval2 ( ∅ ∈ On → ( M ‘ ∅ ) = { 𝑥 No ∣ ∃ 𝑙 ∈ 𝒫 ( M “ ∅ ) ∃ 𝑟 ∈ 𝒫 ( M “ ∅ ) ( 𝑙 <<s 𝑟 ∧ ( 𝑙 |s 𝑟 ) = 𝑥 ) } )
3 1 2 ax-mp ( M ‘ ∅ ) = { 𝑥 No ∣ ∃ 𝑙 ∈ 𝒫 ( M “ ∅ ) ∃ 𝑟 ∈ 𝒫 ( M “ ∅ ) ( 𝑙 <<s 𝑟 ∧ ( 𝑙 |s 𝑟 ) = 𝑥 ) }
4 rabeqsn ( { 𝑥 No ∣ ∃ 𝑙 ∈ 𝒫 ( M “ ∅ ) ∃ 𝑟 ∈ 𝒫 ( M “ ∅ ) ( 𝑙 <<s 𝑟 ∧ ( 𝑙 |s 𝑟 ) = 𝑥 ) } = { 0s } ↔ ∀ 𝑥 ( ( 𝑥 No ∧ ∃ 𝑙 ∈ 𝒫 ( M “ ∅ ) ∃ 𝑟 ∈ 𝒫 ( M “ ∅ ) ( 𝑙 <<s 𝑟 ∧ ( 𝑙 |s 𝑟 ) = 𝑥 ) ) ↔ 𝑥 = 0s ) )
5 0elpw ∅ ∈ 𝒫 No
6 nulssgt ( ∅ ∈ 𝒫 No → ∅ <<s ∅ )
7 5 6 ax-mp ∅ <<s ∅
8 ima0 ( M “ ∅ ) = ∅
9 8 unieqi ( M “ ∅ ) =
10 uni0 ∅ = ∅
11 9 10 eqtri ( M “ ∅ ) = ∅
12 11 pweqi 𝒫 ( M “ ∅ ) = 𝒫 ∅
13 pw0 𝒫 ∅ = { ∅ }
14 12 13 eqtri 𝒫 ( M “ ∅ ) = { ∅ }
15 14 rexeqi ( ∃ 𝑙 ∈ 𝒫 ( M “ ∅ ) ∃ 𝑟 ∈ 𝒫 ( M “ ∅ ) ( 𝑙 <<s 𝑟 ∧ ( 𝑙 |s 𝑟 ) = 𝑥 ) ↔ ∃ 𝑙 ∈ { ∅ } ∃ 𝑟 ∈ 𝒫 ( M “ ∅ ) ( 𝑙 <<s 𝑟 ∧ ( 𝑙 |s 𝑟 ) = 𝑥 ) )
16 14 rexeqi ( ∃ 𝑟 ∈ 𝒫 ( M “ ∅ ) ( 𝑙 <<s 𝑟 ∧ ( 𝑙 |s 𝑟 ) = 𝑥 ) ↔ ∃ 𝑟 ∈ { ∅ } ( 𝑙 <<s 𝑟 ∧ ( 𝑙 |s 𝑟 ) = 𝑥 ) )
17 16 rexbii ( ∃ 𝑙 ∈ { ∅ } ∃ 𝑟 ∈ 𝒫 ( M “ ∅ ) ( 𝑙 <<s 𝑟 ∧ ( 𝑙 |s 𝑟 ) = 𝑥 ) ↔ ∃ 𝑙 ∈ { ∅ } ∃ 𝑟 ∈ { ∅ } ( 𝑙 <<s 𝑟 ∧ ( 𝑙 |s 𝑟 ) = 𝑥 ) )
18 0ex ∅ ∈ V
19 breq2 ( 𝑟 = ∅ → ( 𝑙 <<s 𝑟𝑙 <<s ∅ ) )
20 oveq2 ( 𝑟 = ∅ → ( 𝑙 |s 𝑟 ) = ( 𝑙 |s ∅ ) )
21 20 eqeq1d ( 𝑟 = ∅ → ( ( 𝑙 |s 𝑟 ) = 𝑥 ↔ ( 𝑙 |s ∅ ) = 𝑥 ) )
22 19 21 anbi12d ( 𝑟 = ∅ → ( ( 𝑙 <<s 𝑟 ∧ ( 𝑙 |s 𝑟 ) = 𝑥 ) ↔ ( 𝑙 <<s ∅ ∧ ( 𝑙 |s ∅ ) = 𝑥 ) ) )
23 18 22 rexsn ( ∃ 𝑟 ∈ { ∅ } ( 𝑙 <<s 𝑟 ∧ ( 𝑙 |s 𝑟 ) = 𝑥 ) ↔ ( 𝑙 <<s ∅ ∧ ( 𝑙 |s ∅ ) = 𝑥 ) )
24 23 rexbii ( ∃ 𝑙 ∈ { ∅ } ∃ 𝑟 ∈ { ∅ } ( 𝑙 <<s 𝑟 ∧ ( 𝑙 |s 𝑟 ) = 𝑥 ) ↔ ∃ 𝑙 ∈ { ∅ } ( 𝑙 <<s ∅ ∧ ( 𝑙 |s ∅ ) = 𝑥 ) )
25 breq1 ( 𝑙 = ∅ → ( 𝑙 <<s ∅ ↔ ∅ <<s ∅ ) )
26 oveq1 ( 𝑙 = ∅ → ( 𝑙 |s ∅ ) = ( ∅ |s ∅ ) )
27 26 eqeq1d ( 𝑙 = ∅ → ( ( 𝑙 |s ∅ ) = 𝑥 ↔ ( ∅ |s ∅ ) = 𝑥 ) )
28 25 27 anbi12d ( 𝑙 = ∅ → ( ( 𝑙 <<s ∅ ∧ ( 𝑙 |s ∅ ) = 𝑥 ) ↔ ( ∅ <<s ∅ ∧ ( ∅ |s ∅ ) = 𝑥 ) ) )
29 18 28 rexsn ( ∃ 𝑙 ∈ { ∅ } ( 𝑙 <<s ∅ ∧ ( 𝑙 |s ∅ ) = 𝑥 ) ↔ ( ∅ <<s ∅ ∧ ( ∅ |s ∅ ) = 𝑥 ) )
30 24 29 bitri ( ∃ 𝑙 ∈ { ∅ } ∃ 𝑟 ∈ { ∅ } ( 𝑙 <<s 𝑟 ∧ ( 𝑙 |s 𝑟 ) = 𝑥 ) ↔ ( ∅ <<s ∅ ∧ ( ∅ |s ∅ ) = 𝑥 ) )
31 15 17 30 3bitri ( ∃ 𝑙 ∈ 𝒫 ( M “ ∅ ) ∃ 𝑟 ∈ 𝒫 ( M “ ∅ ) ( 𝑙 <<s 𝑟 ∧ ( 𝑙 |s 𝑟 ) = 𝑥 ) ↔ ( ∅ <<s ∅ ∧ ( ∅ |s ∅ ) = 𝑥 ) )
32 7 31 mpbiran ( ∃ 𝑙 ∈ 𝒫 ( M “ ∅ ) ∃ 𝑟 ∈ 𝒫 ( M “ ∅ ) ( 𝑙 <<s 𝑟 ∧ ( 𝑙 |s 𝑟 ) = 𝑥 ) ↔ ( ∅ |s ∅ ) = 𝑥 )
33 df-0s 0s = ( ∅ |s ∅ )
34 33 eqeq1i ( 0s = 𝑥 ↔ ( ∅ |s ∅ ) = 𝑥 )
35 eqcom ( 0s = 𝑥𝑥 = 0s )
36 32 34 35 3bitr2i ( ∃ 𝑙 ∈ 𝒫 ( M “ ∅ ) ∃ 𝑟 ∈ 𝒫 ( M “ ∅ ) ( 𝑙 <<s 𝑟 ∧ ( 𝑙 |s 𝑟 ) = 𝑥 ) ↔ 𝑥 = 0s )
37 36 anbi2i ( ( 𝑥 No ∧ ∃ 𝑙 ∈ 𝒫 ( M “ ∅ ) ∃ 𝑟 ∈ 𝒫 ( M “ ∅ ) ( 𝑙 <<s 𝑟 ∧ ( 𝑙 |s 𝑟 ) = 𝑥 ) ) ↔ ( 𝑥 No 𝑥 = 0s ) )
38 0sno 0s ∈ No
39 eleq1 ( 𝑥 = 0s → ( 𝑥 No ↔ 0s ∈ No ) )
40 38 39 mpbiri ( 𝑥 = 0s → 𝑥 No )
41 40 pm4.71ri ( 𝑥 = 0s ↔ ( 𝑥 No 𝑥 = 0s ) )
42 37 41 bitr4i ( ( 𝑥 No ∧ ∃ 𝑙 ∈ 𝒫 ( M “ ∅ ) ∃ 𝑟 ∈ 𝒫 ( M “ ∅ ) ( 𝑙 <<s 𝑟 ∧ ( 𝑙 |s 𝑟 ) = 𝑥 ) ) ↔ 𝑥 = 0s )
43 4 42 mpgbir { 𝑥 No ∣ ∃ 𝑙 ∈ 𝒫 ( M “ ∅ ) ∃ 𝑟 ∈ 𝒫 ( M “ ∅ ) ( 𝑙 <<s 𝑟 ∧ ( 𝑙 |s 𝑟 ) = 𝑥 ) } = { 0s }
44 3 43 eqtri ( M ‘ ∅ ) = { 0s }