Step |
Hyp |
Ref |
Expression |
1 |
|
0elon |
|- (/) e. On |
2 |
|
madeval2 |
|- ( (/) e. On -> ( _M ` (/) ) = { x e. No | E. l e. ~P U. ( _M " (/) ) E. r e. ~P U. ( _M " (/) ) ( l < |
3 |
1 2
|
ax-mp |
|- ( _M ` (/) ) = { x e. No | E. l e. ~P U. ( _M " (/) ) E. r e. ~P U. ( _M " (/) ) ( l < |
4 |
|
rabeqsn |
|- ( { x e. No | E. l e. ~P U. ( _M " (/) ) E. r e. ~P U. ( _M " (/) ) ( l < A. x ( ( x e. No /\ E. l e. ~P U. ( _M " (/) ) E. r e. ~P U. ( _M " (/) ) ( l < x = 0s ) ) |
5 |
|
0elpw |
|- (/) e. ~P No |
6 |
|
nulssgt |
|- ( (/) e. ~P No -> (/) < |
7 |
5 6
|
ax-mp |
|- (/) < |
8 |
|
ima0 |
|- ( _M " (/) ) = (/) |
9 |
8
|
unieqi |
|- U. ( _M " (/) ) = U. (/) |
10 |
|
uni0 |
|- U. (/) = (/) |
11 |
9 10
|
eqtri |
|- U. ( _M " (/) ) = (/) |
12 |
11
|
pweqi |
|- ~P U. ( _M " (/) ) = ~P (/) |
13 |
|
pw0 |
|- ~P (/) = { (/) } |
14 |
12 13
|
eqtri |
|- ~P U. ( _M " (/) ) = { (/) } |
15 |
14
|
rexeqi |
|- ( E. l e. ~P U. ( _M " (/) ) E. r e. ~P U. ( _M " (/) ) ( l < E. l e. { (/) } E. r e. ~P U. ( _M " (/) ) ( l < |
16 |
14
|
rexeqi |
|- ( E. r e. ~P U. ( _M " (/) ) ( l < E. r e. { (/) } ( l < |
17 |
16
|
rexbii |
|- ( E. l e. { (/) } E. r e. ~P U. ( _M " (/) ) ( l < E. l e. { (/) } E. r e. { (/) } ( l < |
18 |
|
0ex |
|- (/) e. _V |
19 |
|
breq2 |
|- ( r = (/) -> ( l < l < |
20 |
|
oveq2 |
|- ( r = (/) -> ( l |s r ) = ( l |s (/) ) ) |
21 |
20
|
eqeq1d |
|- ( r = (/) -> ( ( l |s r ) = x <-> ( l |s (/) ) = x ) ) |
22 |
19 21
|
anbi12d |
|- ( r = (/) -> ( ( l < ( l < |
23 |
18 22
|
rexsn |
|- ( E. r e. { (/) } ( l < ( l < |
24 |
23
|
rexbii |
|- ( E. l e. { (/) } E. r e. { (/) } ( l < E. l e. { (/) } ( l < |
25 |
|
breq1 |
|- ( l = (/) -> ( l < (/) < |
26 |
|
oveq1 |
|- ( l = (/) -> ( l |s (/) ) = ( (/) |s (/) ) ) |
27 |
26
|
eqeq1d |
|- ( l = (/) -> ( ( l |s (/) ) = x <-> ( (/) |s (/) ) = x ) ) |
28 |
25 27
|
anbi12d |
|- ( l = (/) -> ( ( l < ( (/) < |
29 |
18 28
|
rexsn |
|- ( E. l e. { (/) } ( l < ( (/) < |
30 |
24 29
|
bitri |
|- ( E. l e. { (/) } E. r e. { (/) } ( l < ( (/) < |
31 |
15 17 30
|
3bitri |
|- ( E. l e. ~P U. ( _M " (/) ) E. r e. ~P U. ( _M " (/) ) ( l < ( (/) < |
32 |
7 31
|
mpbiran |
|- ( E. l e. ~P U. ( _M " (/) ) E. r e. ~P U. ( _M " (/) ) ( l < ( (/) |s (/) ) = x ) |
33 |
|
df-0s |
|- 0s = ( (/) |s (/) ) |
34 |
33
|
eqeq1i |
|- ( 0s = x <-> ( (/) |s (/) ) = x ) |
35 |
|
eqcom |
|- ( 0s = x <-> x = 0s ) |
36 |
32 34 35
|
3bitr2i |
|- ( E. l e. ~P U. ( _M " (/) ) E. r e. ~P U. ( _M " (/) ) ( l < x = 0s ) |
37 |
36
|
anbi2i |
|- ( ( x e. No /\ E. l e. ~P U. ( _M " (/) ) E. r e. ~P U. ( _M " (/) ) ( l < ( x e. No /\ x = 0s ) ) |
38 |
|
0sno |
|- 0s e. No |
39 |
|
eleq1 |
|- ( x = 0s -> ( x e. No <-> 0s e. No ) ) |
40 |
38 39
|
mpbiri |
|- ( x = 0s -> x e. No ) |
41 |
40
|
pm4.71ri |
|- ( x = 0s <-> ( x e. No /\ x = 0s ) ) |
42 |
37 41
|
bitr4i |
|- ( ( x e. No /\ E. l e. ~P U. ( _M " (/) ) E. r e. ~P U. ( _M " (/) ) ( l < x = 0s ) |
43 |
4 42
|
mpgbir |
|- { x e. No | E. l e. ~P U. ( _M " (/) ) E. r e. ~P U. ( _M " (/) ) ( l < |
44 |
3 43
|
eqtri |
|- ( _M ` (/) ) = { 0s } |