Metamath Proof Explorer


Theorem made0

Description: The only surreal made on day (/) is 0s . (Contributed by Scott Fenton, 7-Aug-2024)

Ref Expression
Assertion made0
|- ( _M ` (/) ) = { 0s }

Proof

Step Hyp Ref Expression
1 0elon
 |-  (/) e. On
2 madeval2
 |-  ( (/) e. On -> ( _M ` (/) ) = { x e. No | E. l e. ~P U. ( _M " (/) ) E. r e. ~P U. ( _M " (/) ) ( l <
3 1 2 ax-mp
 |-  ( _M ` (/) ) = { x e. No | E. l e. ~P U. ( _M " (/) ) E. r e. ~P U. ( _M " (/) ) ( l <
4 rabeqsn
 |-  ( { x e. No | E. l e. ~P U. ( _M " (/) ) E. r e. ~P U. ( _M " (/) ) ( l < A. x ( ( x e. No /\ E. l e. ~P U. ( _M " (/) ) E. r e. ~P U. ( _M " (/) ) ( l < x = 0s ) )
5 0elpw
 |-  (/) e. ~P No
6 nulssgt
 |-  ( (/) e. ~P No -> (/) <
7 5 6 ax-mp
 |-  (/) <
8 ima0
 |-  ( _M " (/) ) = (/)
9 8 unieqi
 |-  U. ( _M " (/) ) = U. (/)
10 uni0
 |-  U. (/) = (/)
11 9 10 eqtri
 |-  U. ( _M " (/) ) = (/)
12 11 pweqi
 |-  ~P U. ( _M " (/) ) = ~P (/)
13 pw0
 |-  ~P (/) = { (/) }
14 12 13 eqtri
 |-  ~P U. ( _M " (/) ) = { (/) }
15 14 rexeqi
 |-  ( E. l e. ~P U. ( _M " (/) ) E. r e. ~P U. ( _M " (/) ) ( l < E. l e. { (/) } E. r e. ~P U. ( _M " (/) ) ( l <
16 14 rexeqi
 |-  ( E. r e. ~P U. ( _M " (/) ) ( l < E. r e. { (/) } ( l <
17 16 rexbii
 |-  ( E. l e. { (/) } E. r e. ~P U. ( _M " (/) ) ( l < E. l e. { (/) } E. r e. { (/) } ( l <
18 0ex
 |-  (/) e. _V
19 breq2
 |-  ( r = (/) -> ( l < l <
20 oveq2
 |-  ( r = (/) -> ( l |s r ) = ( l |s (/) ) )
21 20 eqeq1d
 |-  ( r = (/) -> ( ( l |s r ) = x <-> ( l |s (/) ) = x ) )
22 19 21 anbi12d
 |-  ( r = (/) -> ( ( l < ( l <
23 18 22 rexsn
 |-  ( E. r e. { (/) } ( l < ( l <
24 23 rexbii
 |-  ( E. l e. { (/) } E. r e. { (/) } ( l < E. l e. { (/) } ( l <
25 breq1
 |-  ( l = (/) -> ( l < (/) <
26 oveq1
 |-  ( l = (/) -> ( l |s (/) ) = ( (/) |s (/) ) )
27 26 eqeq1d
 |-  ( l = (/) -> ( ( l |s (/) ) = x <-> ( (/) |s (/) ) = x ) )
28 25 27 anbi12d
 |-  ( l = (/) -> ( ( l < ( (/) <
29 18 28 rexsn
 |-  ( E. l e. { (/) } ( l < ( (/) <
30 24 29 bitri
 |-  ( E. l e. { (/) } E. r e. { (/) } ( l < ( (/) <
31 15 17 30 3bitri
 |-  ( E. l e. ~P U. ( _M " (/) ) E. r e. ~P U. ( _M " (/) ) ( l < ( (/) <
32 7 31 mpbiran
 |-  ( E. l e. ~P U. ( _M " (/) ) E. r e. ~P U. ( _M " (/) ) ( l < ( (/) |s (/) ) = x )
33 df-0s
 |-  0s = ( (/) |s (/) )
34 33 eqeq1i
 |-  ( 0s = x <-> ( (/) |s (/) ) = x )
35 eqcom
 |-  ( 0s = x <-> x = 0s )
36 32 34 35 3bitr2i
 |-  ( E. l e. ~P U. ( _M " (/) ) E. r e. ~P U. ( _M " (/) ) ( l < x = 0s )
37 36 anbi2i
 |-  ( ( x e. No /\ E. l e. ~P U. ( _M " (/) ) E. r e. ~P U. ( _M " (/) ) ( l < ( x e. No /\ x = 0s ) )
38 0sno
 |-  0s e. No
39 eleq1
 |-  ( x = 0s -> ( x e. No <-> 0s e. No ) )
40 38 39 mpbiri
 |-  ( x = 0s -> x e. No )
41 40 pm4.71ri
 |-  ( x = 0s <-> ( x e. No /\ x = 0s ) )
42 37 41 bitr4i
 |-  ( ( x e. No /\ E. l e. ~P U. ( _M " (/) ) E. r e. ~P U. ( _M " (/) ) ( l < x = 0s )
43 4 42 mpgbir
 |-  { x e. No | E. l e. ~P U. ( _M " (/) ) E. r e. ~P U. ( _M " (/) ) ( l <
44 3 43 eqtri
 |-  ( _M ` (/) ) = { 0s }