Metamath Proof Explorer


Theorem ssltleft

Description: A surreal is greater than its left options. Theorem 0(ii) of Conway p. 16. (Contributed by Scott Fenton, 7-Aug-2024)

Ref Expression
Assertion ssltleft ( 𝐴 No → ( L ‘ 𝐴 ) <<s { 𝐴 } )

Proof

Step Hyp Ref Expression
1 leftf L : No ⟶ 𝒫 No
2 1 ffvelrni ( 𝐴 No → ( L ‘ 𝐴 ) ∈ 𝒫 No )
3 2 elpwid ( 𝐴 No → ( L ‘ 𝐴 ) ⊆ No )
4 snssi ( 𝐴 No → { 𝐴 } ⊆ No )
5 leftval ( 𝐴 No → ( L ‘ 𝐴 ) = { 𝑦 ∈ ( O ‘ ( bday 𝐴 ) ) ∣ 𝑦 <s 𝐴 } )
6 5 eleq2d ( 𝐴 No → ( 𝑥 ∈ ( L ‘ 𝐴 ) ↔ 𝑥 ∈ { 𝑦 ∈ ( O ‘ ( bday 𝐴 ) ) ∣ 𝑦 <s 𝐴 } ) )
7 breq1 ( 𝑦 = 𝑥 → ( 𝑦 <s 𝐴𝑥 <s 𝐴 ) )
8 7 elrab ( 𝑥 ∈ { 𝑦 ∈ ( O ‘ ( bday 𝐴 ) ) ∣ 𝑦 <s 𝐴 } ↔ ( 𝑥 ∈ ( O ‘ ( bday 𝐴 ) ) ∧ 𝑥 <s 𝐴 ) )
9 8 simprbi ( 𝑥 ∈ { 𝑦 ∈ ( O ‘ ( bday 𝐴 ) ) ∣ 𝑦 <s 𝐴 } → 𝑥 <s 𝐴 )
10 6 9 syl6bi ( 𝐴 No → ( 𝑥 ∈ ( L ‘ 𝐴 ) → 𝑥 <s 𝐴 ) )
11 10 ralrimiv ( 𝐴 No → ∀ 𝑥 ∈ ( L ‘ 𝐴 ) 𝑥 <s 𝐴 )
12 breq2 ( 𝑦 = 𝐴 → ( 𝑥 <s 𝑦𝑥 <s 𝐴 ) )
13 12 ralsng ( 𝐴 No → ( ∀ 𝑦 ∈ { 𝐴 } 𝑥 <s 𝑦𝑥 <s 𝐴 ) )
14 13 ralbidv ( 𝐴 No → ( ∀ 𝑥 ∈ ( L ‘ 𝐴 ) ∀ 𝑦 ∈ { 𝐴 } 𝑥 <s 𝑦 ↔ ∀ 𝑥 ∈ ( L ‘ 𝐴 ) 𝑥 <s 𝐴 ) )
15 11 14 mpbird ( 𝐴 No → ∀ 𝑥 ∈ ( L ‘ 𝐴 ) ∀ 𝑦 ∈ { 𝐴 } 𝑥 <s 𝑦 )
16 fvex ( L ‘ 𝐴 ) ∈ V
17 snex { 𝐴 } ∈ V
18 16 17 pm3.2i ( ( L ‘ 𝐴 ) ∈ V ∧ { 𝐴 } ∈ V )
19 brsslt ( ( L ‘ 𝐴 ) <<s { 𝐴 } ↔ ( ( ( L ‘ 𝐴 ) ∈ V ∧ { 𝐴 } ∈ V ) ∧ ( ( L ‘ 𝐴 ) ⊆ No ∧ { 𝐴 } ⊆ No ∧ ∀ 𝑥 ∈ ( L ‘ 𝐴 ) ∀ 𝑦 ∈ { 𝐴 } 𝑥 <s 𝑦 ) ) )
20 18 19 mpbiran ( ( L ‘ 𝐴 ) <<s { 𝐴 } ↔ ( ( L ‘ 𝐴 ) ⊆ No ∧ { 𝐴 } ⊆ No ∧ ∀ 𝑥 ∈ ( L ‘ 𝐴 ) ∀ 𝑦 ∈ { 𝐴 } 𝑥 <s 𝑦 ) )
21 3 4 15 20 syl3anbrc ( 𝐴 No → ( L ‘ 𝐴 ) <<s { 𝐴 } )