Metamath Proof Explorer


Theorem ssltright

Description: A surreal is less than its right options. Theorem 0(i) of Conway p. 16. (Contributed by Scott Fenton, 7-Aug-2024)

Ref Expression
Assertion ssltright ( 𝐴 No → { 𝐴 } <<s ( R ‘ 𝐴 ) )

Proof

Step Hyp Ref Expression
1 snex { 𝐴 } ∈ V
2 1 a1i ( 𝐴 No → { 𝐴 } ∈ V )
3 fvexd ( 𝐴 No → ( R ‘ 𝐴 ) ∈ V )
4 snssi ( 𝐴 No → { 𝐴 } ⊆ No )
5 rightf R : No ⟶ 𝒫 No
6 5 ffvelrni ( 𝐴 No → ( R ‘ 𝐴 ) ∈ 𝒫 No )
7 6 elpwid ( 𝐴 No → ( R ‘ 𝐴 ) ⊆ No )
8 velsn ( 𝑥 ∈ { 𝐴 } ↔ 𝑥 = 𝐴 )
9 rightval ( R ‘ 𝐴 ) = { 𝑦 ∈ ( O ‘ ( bday 𝐴 ) ) ∣ 𝐴 <s 𝑦 }
10 9 a1i ( 𝐴 No → ( R ‘ 𝐴 ) = { 𝑦 ∈ ( O ‘ ( bday 𝐴 ) ) ∣ 𝐴 <s 𝑦 } )
11 10 eleq2d ( 𝐴 No → ( 𝑦 ∈ ( R ‘ 𝐴 ) ↔ 𝑦 ∈ { 𝑦 ∈ ( O ‘ ( bday 𝐴 ) ) ∣ 𝐴 <s 𝑦 } ) )
12 rabid ( 𝑦 ∈ { 𝑦 ∈ ( O ‘ ( bday 𝐴 ) ) ∣ 𝐴 <s 𝑦 } ↔ ( 𝑦 ∈ ( O ‘ ( bday 𝐴 ) ) ∧ 𝐴 <s 𝑦 ) )
13 11 12 bitrdi ( 𝐴 No → ( 𝑦 ∈ ( R ‘ 𝐴 ) ↔ ( 𝑦 ∈ ( O ‘ ( bday 𝐴 ) ) ∧ 𝐴 <s 𝑦 ) ) )
14 13 simplbda ( ( 𝐴 No 𝑦 ∈ ( R ‘ 𝐴 ) ) → 𝐴 <s 𝑦 )
15 breq1 ( 𝑥 = 𝐴 → ( 𝑥 <s 𝑦𝐴 <s 𝑦 ) )
16 14 15 syl5ibr ( 𝑥 = 𝐴 → ( ( 𝐴 No 𝑦 ∈ ( R ‘ 𝐴 ) ) → 𝑥 <s 𝑦 ) )
17 16 expd ( 𝑥 = 𝐴 → ( 𝐴 No → ( 𝑦 ∈ ( R ‘ 𝐴 ) → 𝑥 <s 𝑦 ) ) )
18 8 17 sylbi ( 𝑥 ∈ { 𝐴 } → ( 𝐴 No → ( 𝑦 ∈ ( R ‘ 𝐴 ) → 𝑥 <s 𝑦 ) ) )
19 18 3imp21 ( ( 𝐴 No 𝑥 ∈ { 𝐴 } ∧ 𝑦 ∈ ( R ‘ 𝐴 ) ) → 𝑥 <s 𝑦 )
20 2 3 4 7 19 ssltd ( 𝐴 No → { 𝐴 } <<s ( R ‘ 𝐴 ) )