Metamath Proof Explorer


Theorem ssltright

Description: A surreal is less than its right options. Theorem 0(i) of Conway p. 16. (Contributed by Scott Fenton, 7-Aug-2024)

Ref Expression
Assertion ssltright ( 𝐴 No → { 𝐴 } <<s ( R ‘ 𝐴 ) )

Proof

Step Hyp Ref Expression
1 snssi ( 𝐴 No → { 𝐴 } ⊆ No )
2 rightf R : No ⟶ 𝒫 No
3 2 ffvelrni ( 𝐴 No → ( R ‘ 𝐴 ) ∈ 𝒫 No )
4 3 elpwid ( 𝐴 No → ( R ‘ 𝐴 ) ⊆ No )
5 rightval ( 𝐴 No → ( R ‘ 𝐴 ) = { 𝑥 ∈ ( O ‘ ( bday 𝐴 ) ) ∣ 𝐴 <s 𝑥 } )
6 5 eleq2d ( 𝐴 No → ( 𝑦 ∈ ( R ‘ 𝐴 ) ↔ 𝑦 ∈ { 𝑥 ∈ ( O ‘ ( bday 𝐴 ) ) ∣ 𝐴 <s 𝑥 } ) )
7 breq2 ( 𝑥 = 𝑦 → ( 𝐴 <s 𝑥𝐴 <s 𝑦 ) )
8 7 elrab ( 𝑦 ∈ { 𝑥 ∈ ( O ‘ ( bday 𝐴 ) ) ∣ 𝐴 <s 𝑥 } ↔ ( 𝑦 ∈ ( O ‘ ( bday 𝐴 ) ) ∧ 𝐴 <s 𝑦 ) )
9 8 simprbi ( 𝑦 ∈ { 𝑥 ∈ ( O ‘ ( bday 𝐴 ) ) ∣ 𝐴 <s 𝑥 } → 𝐴 <s 𝑦 )
10 6 9 syl6bi ( 𝐴 No → ( 𝑦 ∈ ( R ‘ 𝐴 ) → 𝐴 <s 𝑦 ) )
11 10 ralrimiv ( 𝐴 No → ∀ 𝑦 ∈ ( R ‘ 𝐴 ) 𝐴 <s 𝑦 )
12 breq1 ( 𝑥 = 𝐴 → ( 𝑥 <s 𝑦𝐴 <s 𝑦 ) )
13 12 ralbidv ( 𝑥 = 𝐴 → ( ∀ 𝑦 ∈ ( R ‘ 𝐴 ) 𝑥 <s 𝑦 ↔ ∀ 𝑦 ∈ ( R ‘ 𝐴 ) 𝐴 <s 𝑦 ) )
14 13 ralsng ( 𝐴 No → ( ∀ 𝑥 ∈ { 𝐴 } ∀ 𝑦 ∈ ( R ‘ 𝐴 ) 𝑥 <s 𝑦 ↔ ∀ 𝑦 ∈ ( R ‘ 𝐴 ) 𝐴 <s 𝑦 ) )
15 11 14 mpbird ( 𝐴 No → ∀ 𝑥 ∈ { 𝐴 } ∀ 𝑦 ∈ ( R ‘ 𝐴 ) 𝑥 <s 𝑦 )
16 snex { 𝐴 } ∈ V
17 fvex ( R ‘ 𝐴 ) ∈ V
18 16 17 pm3.2i ( { 𝐴 } ∈ V ∧ ( R ‘ 𝐴 ) ∈ V )
19 brsslt ( { 𝐴 } <<s ( R ‘ 𝐴 ) ↔ ( ( { 𝐴 } ∈ V ∧ ( R ‘ 𝐴 ) ∈ V ) ∧ ( { 𝐴 } ⊆ No ∧ ( R ‘ 𝐴 ) ⊆ No ∧ ∀ 𝑥 ∈ { 𝐴 } ∀ 𝑦 ∈ ( R ‘ 𝐴 ) 𝑥 <s 𝑦 ) ) )
20 18 19 mpbiran ( { 𝐴 } <<s ( R ‘ 𝐴 ) ↔ ( { 𝐴 } ⊆ No ∧ ( R ‘ 𝐴 ) ⊆ No ∧ ∀ 𝑥 ∈ { 𝐴 } ∀ 𝑦 ∈ ( R ‘ 𝐴 ) 𝑥 <s 𝑦 ) )
21 1 4 15 20 syl3anbrc ( 𝐴 No → { 𝐴 } <<s ( R ‘ 𝐴 ) )