Metamath Proof Explorer


Theorem ssltright

Description: A surreal is less than its right options. Theorem 0(i) of Conway p. 16. (Contributed by Scott Fenton, 7-Aug-2024)

Ref Expression
Assertion ssltright
|- ( A e. No -> { A } <

Proof

Step Hyp Ref Expression
1 snex
 |-  { A } e. _V
2 1 a1i
 |-  ( A e. No -> { A } e. _V )
3 fvexd
 |-  ( A e. No -> ( _R ` A ) e. _V )
4 snssi
 |-  ( A e. No -> { A } C_ No )
5 rightf
 |-  _R : No --> ~P No
6 5 ffvelrni
 |-  ( A e. No -> ( _R ` A ) e. ~P No )
7 6 elpwid
 |-  ( A e. No -> ( _R ` A ) C_ No )
8 velsn
 |-  ( x e. { A } <-> x = A )
9 rightval
 |-  ( _R ` A ) = { y e. ( _Old ` ( bday ` A ) ) | A 
10 9 a1i
 |-  ( A e. No -> ( _R ` A ) = { y e. ( _Old ` ( bday ` A ) ) | A 
11 10 eleq2d
 |-  ( A e. No -> ( y e. ( _R ` A ) <-> y e. { y e. ( _Old ` ( bday ` A ) ) | A 
12 rabid
 |-  ( y e. { y e. ( _Old ` ( bday ` A ) ) | A  ( y e. ( _Old ` ( bday ` A ) ) /\ A 
13 11 12 bitrdi
 |-  ( A e. No -> ( y e. ( _R ` A ) <-> ( y e. ( _Old ` ( bday ` A ) ) /\ A 
14 13 simplbda
 |-  ( ( A e. No /\ y e. ( _R ` A ) ) -> A 
15 breq1
 |-  ( x = A -> ( x  A 
16 14 15 syl5ibr
 |-  ( x = A -> ( ( A e. No /\ y e. ( _R ` A ) ) -> x 
17 16 expd
 |-  ( x = A -> ( A e. No -> ( y e. ( _R ` A ) -> x 
18 8 17 sylbi
 |-  ( x e. { A } -> ( A e. No -> ( y e. ( _R ` A ) -> x 
19 18 3imp21
 |-  ( ( A e. No /\ x e. { A } /\ y e. ( _R ` A ) ) -> x 
20 2 3 4 7 19 ssltd
 |-  ( A e. No -> { A } <