Metamath Proof Explorer


Theorem ssltright

Description: A surreal is less than its right options. Theorem 0(i) of Conway p. 16. (Contributed by Scott Fenton, 7-Aug-2024)

Ref Expression
Assertion ssltright A No A s R A

Proof

Step Hyp Ref Expression
1 snex A V
2 1 a1i A No A V
3 fvexd A No R A V
4 snssi A No A No
5 rightf R : No 𝒫 No
6 5 ffvelrni A No R A 𝒫 No
7 6 elpwid A No R A No
8 velsn x A x = A
9 rightval R A = y Old bday A | A < s y
10 9 a1i A No R A = y Old bday A | A < s y
11 10 eleq2d A No y R A y y Old bday A | A < s y
12 rabid y y Old bday A | A < s y y Old bday A A < s y
13 11 12 bitrdi A No y R A y Old bday A A < s y
14 13 simplbda A No y R A A < s y
15 breq1 x = A x < s y A < s y
16 14 15 syl5ibr x = A A No y R A x < s y
17 16 expd x = A A No y R A x < s y
18 8 17 sylbi x A A No y R A x < s y
19 18 3imp21 A No x A y R A x < s y
20 2 3 4 7 19 ssltd A No A s R A