Metamath Proof Explorer


Theorem rightval

Description: The value of the right options function. (Contributed by Scott Fenton, 9-Oct-2024)

Ref Expression
Assertion rightval Could not format assertion : No typesetting found for |- ( _Right ` A ) = { x e. ( _Old ` ( bday ` A ) ) | A

Proof

Step Hyp Ref Expression
1 2fveq3 y=AOldbdayy=OldbdayA
2 breq1 y=Ay<sxA<sx
3 1 2 rabeqbidv y=AxOldbdayy|y<sx=xOldbdayA|A<sx
4 df-right Could not format _Right = ( y e. No |-> { x e. ( _Old ` ( bday ` y ) ) | y { x e. ( _Old ` ( bday ` y ) ) | y
5 fvex OldbdayAV
6 5 rabex xOldbdayA|A<sxV
7 3 4 6 fvmpt Could not format ( A e. No -> ( _Right ` A ) = { x e. ( _Old ` ( bday ` A ) ) | A ( _Right ` A ) = { x e. ( _Old ` ( bday ` A ) ) | A
8 4 fvmptndm Could not format ( -. A e. No -> ( _Right ` A ) = (/) ) : No typesetting found for |- ( -. A e. No -> ( _Right ` A ) = (/) ) with typecode |-
9 bdaydm dombday=No
10 9 eleq2i AdombdayANo
11 ndmfv ¬AdombdaybdayA=
12 10 11 sylnbir ¬ANobdayA=
13 12 fveq2d ¬ANoOldbdayA=Old
14 old0 Old=
15 13 14 eqtrdi ¬ANoOldbdayA=
16 15 rabeqdv ¬ANoxOldbdayA|A<sx=x|A<sx
17 rab0 x|A<sx=
18 16 17 eqtrdi ¬ANoxOldbdayA|A<sx=
19 8 18 eqtr4d Could not format ( -. A e. No -> ( _Right ` A ) = { x e. ( _Old ` ( bday ` A ) ) | A ( _Right ` A ) = { x e. ( _Old ` ( bday ` A ) ) | A
20 7 19 pm2.61i Could not format ( _Right ` A ) = { x e. ( _Old ` ( bday ` A ) ) | A