Metamath Proof Explorer


Theorem rightval

Description: The value of the right options function. (Contributed by Scott Fenton, 9-Oct-2024)

Ref Expression
Assertion rightval R A = x Old bday A | A < s x

Proof

Step Hyp Ref Expression
1 2fveq3 y = A Old bday y = Old bday A
2 breq1 y = A y < s x A < s x
3 1 2 rabeqbidv y = A x Old bday y | y < s x = x Old bday A | A < s x
4 df-right R = y No x Old bday y | y < s x
5 fvex Old bday A V
6 5 rabex x Old bday A | A < s x V
7 3 4 6 fvmpt A No R A = x Old bday A | A < s x
8 4 fvmptndm ¬ A No R A =
9 bdaydm dom bday = No
10 9 eleq2i A dom bday A No
11 ndmfv ¬ A dom bday bday A =
12 10 11 sylnbir ¬ A No bday A =
13 12 fveq2d ¬ A No Old bday A = Old
14 old0 Old =
15 13 14 eqtrdi ¬ A No Old bday A =
16 15 rabeqdv ¬ A No x Old bday A | A < s x = x | A < s x
17 rab0 x | A < s x =
18 16 17 eqtrdi ¬ A No x Old bday A | A < s x =
19 8 18 eqtr4d ¬ A No R A = x Old bday A | A < s x
20 7 19 pm2.61i R A = x Old bday A | A < s x