Metamath Proof Explorer


Theorem leftf

Description: The functionality of the left options function. (Contributed by Scott Fenton, 6-Aug-2024)

Ref Expression
Assertion leftf L : No 𝒫 No

Proof

Step Hyp Ref Expression
1 df-left L = x No y Old bday x | y < s x
2 bdayelon bday x On
3 oldf Old : On 𝒫 No
4 3 ffvelrni bday x On Old bday x 𝒫 No
5 2 4 mp1i x No Old bday x 𝒫 No
6 5 elpwid x No Old bday x No
7 6 sselda x No y Old bday x y No
8 7 a1d x No y Old bday x y < s x y No
9 8 ralrimiva x No y Old bday x y < s x y No
10 fvex Old bday x V
11 10 rabex y Old bday x | y < s x V
12 11 elpw y Old bday x | y < s x 𝒫 No y Old bday x | y < s x No
13 rabss y Old bday x | y < s x No y Old bday x y < s x y No
14 12 13 bitri y Old bday x | y < s x 𝒫 No y Old bday x y < s x y No
15 9 14 sylibr x No y Old bday x | y < s x 𝒫 No
16 1 15 fmpti L : No 𝒫 No