Metamath Proof Explorer


Theorem fvmptndm

Description: Value of a function given by the maps-to notation, outside of its domain. (Contributed by AV, 31-Dec-2020)

Ref Expression
Hypothesis fvmptndm.1 F=xAB
Assertion fvmptndm ¬XAFX=

Proof

Step Hyp Ref Expression
1 fvmptndm.1 F=xAB
2 df-mpt xAB=xy|xAy=B
3 1 2 eqtri F=xy|xAy=B
4 3 fvopab4ndm ¬XAFX=