Metamath Proof Explorer


Theorem fvopab4ndm

Description: Value of a function given by an ordered-pair class abstraction, outside of its domain. (Contributed by NM, 28-Mar-2008)

Ref Expression
Hypothesis fvopab4ndm.1 F=xy|xAφ
Assertion fvopab4ndm ¬BAFB=

Proof

Step Hyp Ref Expression
1 fvopab4ndm.1 F=xy|xAφ
2 1 dmeqi domF=domxy|xAφ
3 dmopabss domxy|xAφA
4 2 3 eqsstri domFA
5 4 sseli BdomFBA
6 ndmfv ¬BdomFFB=
7 5 6 nsyl5 ¬BAFB=