Step |
Hyp |
Ref |
Expression |
1 |
|
fvexd |
|- ( A e. No -> ( _L ` A ) e. _V ) |
2 |
|
snex |
|- { A } e. _V |
3 |
2
|
a1i |
|- ( A e. No -> { A } e. _V ) |
4 |
|
leftf |
|- _L : No --> ~P No |
5 |
4
|
ffvelrni |
|- ( A e. No -> ( _L ` A ) e. ~P No ) |
6 |
5
|
elpwid |
|- ( A e. No -> ( _L ` A ) C_ No ) |
7 |
|
snssi |
|- ( A e. No -> { A } C_ No ) |
8 |
|
velsn |
|- ( y e. { A } <-> y = A ) |
9 |
|
leftval |
|- ( _L ` A ) = { x e. ( _Old ` ( bday ` A ) ) | x |
10 |
9
|
a1i |
|- ( A e. No -> ( _L ` A ) = { x e. ( _Old ` ( bday ` A ) ) | x |
11 |
10
|
eleq2d |
|- ( A e. No -> ( x e. ( _L ` A ) <-> x e. { x e. ( _Old ` ( bday ` A ) ) | x |
12 |
|
rabid |
|- ( x e. { x e. ( _Old ` ( bday ` A ) ) | x ( x e. ( _Old ` ( bday ` A ) ) /\ x |
13 |
11 12
|
bitrdi |
|- ( A e. No -> ( x e. ( _L ` A ) <-> ( x e. ( _Old ` ( bday ` A ) ) /\ x |
14 |
13
|
simplbda |
|- ( ( A e. No /\ x e. ( _L ` A ) ) -> x |
15 |
|
breq2 |
|- ( y = A -> ( x x |
16 |
14 15
|
syl5ibr |
|- ( y = A -> ( ( A e. No /\ x e. ( _L ` A ) ) -> x |
17 |
16
|
expd |
|- ( y = A -> ( A e. No -> ( x e. ( _L ` A ) -> x |
18 |
8 17
|
sylbi |
|- ( y e. { A } -> ( A e. No -> ( x e. ( _L ` A ) -> x |
19 |
18
|
3imp231 |
|- ( ( A e. No /\ x e. ( _L ` A ) /\ y e. { A } ) -> x |
20 |
1 3 6 7 19
|
ssltd |
|- ( A e. No -> ( _L ` A ) < |