Step |
Hyp |
Ref |
Expression |
1 |
|
fvex |
⊢ ( L ‘ 𝐴 ) ∈ V |
2 |
1
|
abrexex |
⊢ { 𝑥 ∣ ∃ 𝑦 ∈ ( L ‘ 𝐴 ) 𝑥 = ( 𝑦 +s 𝐵 ) } ∈ V |
3 |
|
fvex |
⊢ ( L ‘ 𝐵 ) ∈ V |
4 |
3
|
abrexex |
⊢ { 𝑥 ∣ ∃ 𝑦 ∈ ( L ‘ 𝐵 ) 𝑥 = ( 𝐴 +s 𝑦 ) } ∈ V |
5 |
2 4
|
unex |
⊢ ( { 𝑥 ∣ ∃ 𝑦 ∈ ( L ‘ 𝐴 ) 𝑥 = ( 𝑦 +s 𝐵 ) } ∪ { 𝑥 ∣ ∃ 𝑦 ∈ ( L ‘ 𝐵 ) 𝑥 = ( 𝐴 +s 𝑦 ) } ) ∈ V |
6 |
5
|
a1i |
⊢ ( ( 𝐴 ∈ Ons ∧ 𝐵 ∈ Ons ) → ( { 𝑥 ∣ ∃ 𝑦 ∈ ( L ‘ 𝐴 ) 𝑥 = ( 𝑦 +s 𝐵 ) } ∪ { 𝑥 ∣ ∃ 𝑦 ∈ ( L ‘ 𝐵 ) 𝑥 = ( 𝐴 +s 𝑦 ) } ) ∈ V ) |
7 |
|
leftssno |
⊢ ( L ‘ 𝐴 ) ⊆ No |
8 |
7
|
sseli |
⊢ ( 𝑦 ∈ ( L ‘ 𝐴 ) → 𝑦 ∈ No ) |
9 |
8
|
adantl |
⊢ ( ( ( 𝐴 ∈ Ons ∧ 𝐵 ∈ Ons ) ∧ 𝑦 ∈ ( L ‘ 𝐴 ) ) → 𝑦 ∈ No ) |
10 |
|
onsno |
⊢ ( 𝐵 ∈ Ons → 𝐵 ∈ No ) |
11 |
10
|
ad2antlr |
⊢ ( ( ( 𝐴 ∈ Ons ∧ 𝐵 ∈ Ons ) ∧ 𝑦 ∈ ( L ‘ 𝐴 ) ) → 𝐵 ∈ No ) |
12 |
9 11
|
addscld |
⊢ ( ( ( 𝐴 ∈ Ons ∧ 𝐵 ∈ Ons ) ∧ 𝑦 ∈ ( L ‘ 𝐴 ) ) → ( 𝑦 +s 𝐵 ) ∈ No ) |
13 |
|
eleq1 |
⊢ ( 𝑥 = ( 𝑦 +s 𝐵 ) → ( 𝑥 ∈ No ↔ ( 𝑦 +s 𝐵 ) ∈ No ) ) |
14 |
12 13
|
syl5ibrcom |
⊢ ( ( ( 𝐴 ∈ Ons ∧ 𝐵 ∈ Ons ) ∧ 𝑦 ∈ ( L ‘ 𝐴 ) ) → ( 𝑥 = ( 𝑦 +s 𝐵 ) → 𝑥 ∈ No ) ) |
15 |
14
|
rexlimdva |
⊢ ( ( 𝐴 ∈ Ons ∧ 𝐵 ∈ Ons ) → ( ∃ 𝑦 ∈ ( L ‘ 𝐴 ) 𝑥 = ( 𝑦 +s 𝐵 ) → 𝑥 ∈ No ) ) |
16 |
15
|
abssdv |
⊢ ( ( 𝐴 ∈ Ons ∧ 𝐵 ∈ Ons ) → { 𝑥 ∣ ∃ 𝑦 ∈ ( L ‘ 𝐴 ) 𝑥 = ( 𝑦 +s 𝐵 ) } ⊆ No ) |
17 |
|
onsno |
⊢ ( 𝐴 ∈ Ons → 𝐴 ∈ No ) |
18 |
17
|
ad2antrr |
⊢ ( ( ( 𝐴 ∈ Ons ∧ 𝐵 ∈ Ons ) ∧ 𝑦 ∈ ( L ‘ 𝐵 ) ) → 𝐴 ∈ No ) |
19 |
|
leftssno |
⊢ ( L ‘ 𝐵 ) ⊆ No |
20 |
19
|
sseli |
⊢ ( 𝑦 ∈ ( L ‘ 𝐵 ) → 𝑦 ∈ No ) |
21 |
20
|
adantl |
⊢ ( ( ( 𝐴 ∈ Ons ∧ 𝐵 ∈ Ons ) ∧ 𝑦 ∈ ( L ‘ 𝐵 ) ) → 𝑦 ∈ No ) |
22 |
18 21
|
addscld |
⊢ ( ( ( 𝐴 ∈ Ons ∧ 𝐵 ∈ Ons ) ∧ 𝑦 ∈ ( L ‘ 𝐵 ) ) → ( 𝐴 +s 𝑦 ) ∈ No ) |
23 |
|
eleq1 |
⊢ ( 𝑥 = ( 𝐴 +s 𝑦 ) → ( 𝑥 ∈ No ↔ ( 𝐴 +s 𝑦 ) ∈ No ) ) |
24 |
22 23
|
syl5ibrcom |
⊢ ( ( ( 𝐴 ∈ Ons ∧ 𝐵 ∈ Ons ) ∧ 𝑦 ∈ ( L ‘ 𝐵 ) ) → ( 𝑥 = ( 𝐴 +s 𝑦 ) → 𝑥 ∈ No ) ) |
25 |
24
|
rexlimdva |
⊢ ( ( 𝐴 ∈ Ons ∧ 𝐵 ∈ Ons ) → ( ∃ 𝑦 ∈ ( L ‘ 𝐵 ) 𝑥 = ( 𝐴 +s 𝑦 ) → 𝑥 ∈ No ) ) |
26 |
25
|
abssdv |
⊢ ( ( 𝐴 ∈ Ons ∧ 𝐵 ∈ Ons ) → { 𝑥 ∣ ∃ 𝑦 ∈ ( L ‘ 𝐵 ) 𝑥 = ( 𝐴 +s 𝑦 ) } ⊆ No ) |
27 |
16 26
|
unssd |
⊢ ( ( 𝐴 ∈ Ons ∧ 𝐵 ∈ Ons ) → ( { 𝑥 ∣ ∃ 𝑦 ∈ ( L ‘ 𝐴 ) 𝑥 = ( 𝑦 +s 𝐵 ) } ∪ { 𝑥 ∣ ∃ 𝑦 ∈ ( L ‘ 𝐵 ) 𝑥 = ( 𝐴 +s 𝑦 ) } ) ⊆ No ) |
28 |
1
|
elpw |
⊢ ( ( L ‘ 𝐴 ) ∈ 𝒫 No ↔ ( L ‘ 𝐴 ) ⊆ No ) |
29 |
7 28
|
mpbir |
⊢ ( L ‘ 𝐴 ) ∈ 𝒫 No |
30 |
|
nulssgt |
⊢ ( ( L ‘ 𝐴 ) ∈ 𝒫 No → ( L ‘ 𝐴 ) <<s ∅ ) |
31 |
29 30
|
mp1i |
⊢ ( ( 𝐴 ∈ Ons ∧ 𝐵 ∈ Ons ) → ( L ‘ 𝐴 ) <<s ∅ ) |
32 |
3
|
elpw |
⊢ ( ( L ‘ 𝐵 ) ∈ 𝒫 No ↔ ( L ‘ 𝐵 ) ⊆ No ) |
33 |
19 32
|
mpbir |
⊢ ( L ‘ 𝐵 ) ∈ 𝒫 No |
34 |
|
nulssgt |
⊢ ( ( L ‘ 𝐵 ) ∈ 𝒫 No → ( L ‘ 𝐵 ) <<s ∅ ) |
35 |
33 34
|
mp1i |
⊢ ( ( 𝐴 ∈ Ons ∧ 𝐵 ∈ Ons ) → ( L ‘ 𝐵 ) <<s ∅ ) |
36 |
|
onscutleft |
⊢ ( 𝐴 ∈ Ons → 𝐴 = ( ( L ‘ 𝐴 ) |s ∅ ) ) |
37 |
36
|
adantr |
⊢ ( ( 𝐴 ∈ Ons ∧ 𝐵 ∈ Ons ) → 𝐴 = ( ( L ‘ 𝐴 ) |s ∅ ) ) |
38 |
|
onscutleft |
⊢ ( 𝐵 ∈ Ons → 𝐵 = ( ( L ‘ 𝐵 ) |s ∅ ) ) |
39 |
38
|
adantl |
⊢ ( ( 𝐴 ∈ Ons ∧ 𝐵 ∈ Ons ) → 𝐵 = ( ( L ‘ 𝐵 ) |s ∅ ) ) |
40 |
31 35 37 39
|
addsunif |
⊢ ( ( 𝐴 ∈ Ons ∧ 𝐵 ∈ Ons ) → ( 𝐴 +s 𝐵 ) = ( ( { 𝑥 ∣ ∃ 𝑦 ∈ ( L ‘ 𝐴 ) 𝑥 = ( 𝑦 +s 𝐵 ) } ∪ { 𝑥 ∣ ∃ 𝑦 ∈ ( L ‘ 𝐵 ) 𝑥 = ( 𝐴 +s 𝑦 ) } ) |s ( { 𝑥 ∣ ∃ 𝑦 ∈ ∅ 𝑥 = ( 𝑦 +s 𝐵 ) } ∪ { 𝑥 ∣ ∃ 𝑦 ∈ ∅ 𝑥 = ( 𝐴 +s 𝑦 ) } ) ) ) |
41 |
|
rex0 |
⊢ ¬ ∃ 𝑦 ∈ ∅ 𝑥 = ( 𝑦 +s 𝐵 ) |
42 |
41
|
abf |
⊢ { 𝑥 ∣ ∃ 𝑦 ∈ ∅ 𝑥 = ( 𝑦 +s 𝐵 ) } = ∅ |
43 |
|
rex0 |
⊢ ¬ ∃ 𝑦 ∈ ∅ 𝑥 = ( 𝐴 +s 𝑦 ) |
44 |
43
|
abf |
⊢ { 𝑥 ∣ ∃ 𝑦 ∈ ∅ 𝑥 = ( 𝐴 +s 𝑦 ) } = ∅ |
45 |
42 44
|
uneq12i |
⊢ ( { 𝑥 ∣ ∃ 𝑦 ∈ ∅ 𝑥 = ( 𝑦 +s 𝐵 ) } ∪ { 𝑥 ∣ ∃ 𝑦 ∈ ∅ 𝑥 = ( 𝐴 +s 𝑦 ) } ) = ( ∅ ∪ ∅ ) |
46 |
|
un0 |
⊢ ( ∅ ∪ ∅ ) = ∅ |
47 |
45 46
|
eqtri |
⊢ ( { 𝑥 ∣ ∃ 𝑦 ∈ ∅ 𝑥 = ( 𝑦 +s 𝐵 ) } ∪ { 𝑥 ∣ ∃ 𝑦 ∈ ∅ 𝑥 = ( 𝐴 +s 𝑦 ) } ) = ∅ |
48 |
47
|
oveq2i |
⊢ ( ( { 𝑥 ∣ ∃ 𝑦 ∈ ( L ‘ 𝐴 ) 𝑥 = ( 𝑦 +s 𝐵 ) } ∪ { 𝑥 ∣ ∃ 𝑦 ∈ ( L ‘ 𝐵 ) 𝑥 = ( 𝐴 +s 𝑦 ) } ) |s ( { 𝑥 ∣ ∃ 𝑦 ∈ ∅ 𝑥 = ( 𝑦 +s 𝐵 ) } ∪ { 𝑥 ∣ ∃ 𝑦 ∈ ∅ 𝑥 = ( 𝐴 +s 𝑦 ) } ) ) = ( ( { 𝑥 ∣ ∃ 𝑦 ∈ ( L ‘ 𝐴 ) 𝑥 = ( 𝑦 +s 𝐵 ) } ∪ { 𝑥 ∣ ∃ 𝑦 ∈ ( L ‘ 𝐵 ) 𝑥 = ( 𝐴 +s 𝑦 ) } ) |s ∅ ) |
49 |
40 48
|
eqtrdi |
⊢ ( ( 𝐴 ∈ Ons ∧ 𝐵 ∈ Ons ) → ( 𝐴 +s 𝐵 ) = ( ( { 𝑥 ∣ ∃ 𝑦 ∈ ( L ‘ 𝐴 ) 𝑥 = ( 𝑦 +s 𝐵 ) } ∪ { 𝑥 ∣ ∃ 𝑦 ∈ ( L ‘ 𝐵 ) 𝑥 = ( 𝐴 +s 𝑦 ) } ) |s ∅ ) ) |
50 |
6 27 49
|
elons2d |
⊢ ( ( 𝐴 ∈ Ons ∧ 𝐵 ∈ Ons ) → ( 𝐴 +s 𝐵 ) ∈ Ons ) |