Description: Surreal numbers are closed under addition. Theorem 6(iii) of Conway p. 18. (Contributed by Scott Fenton, 21-Jan-2025)
Ref | Expression | ||
---|---|---|---|
Hypotheses | addscut.1 | ⊢ ( 𝜑 → 𝑋 ∈ No ) | |
addscut.2 | ⊢ ( 𝜑 → 𝑌 ∈ No ) | ||
Assertion | addscld | ⊢ ( 𝜑 → ( 𝑋 +s 𝑌 ) ∈ No ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | addscut.1 | ⊢ ( 𝜑 → 𝑋 ∈ No ) | |
2 | addscut.2 | ⊢ ( 𝜑 → 𝑌 ∈ No ) | |
3 | 1 2 | addscut | ⊢ ( 𝜑 → ( ( 𝑋 +s 𝑌 ) ∈ No ∧ ( { 𝑝 ∣ ∃ 𝑙 ∈ ( L ‘ 𝑋 ) 𝑝 = ( 𝑙 +s 𝑌 ) } ∪ { 𝑞 ∣ ∃ 𝑚 ∈ ( L ‘ 𝑌 ) 𝑞 = ( 𝑋 +s 𝑚 ) } ) <<s { ( 𝑋 +s 𝑌 ) } ∧ { ( 𝑋 +s 𝑌 ) } <<s ( { 𝑤 ∣ ∃ 𝑟 ∈ ( R ‘ 𝑋 ) 𝑤 = ( 𝑟 +s 𝑌 ) } ∪ { 𝑡 ∣ ∃ 𝑠 ∈ ( R ‘ 𝑌 ) 𝑡 = ( 𝑋 +s 𝑠 ) } ) ) ) |
4 | 3 | simp1d | ⊢ ( 𝜑 → ( 𝑋 +s 𝑌 ) ∈ No ) |