Metamath Proof Explorer


Theorem addscld

Description: Surreal numbers are closed under addition. Theorem 6(iii) of Conway p. 18. (Contributed by Scott Fenton, 21-Jan-2025)

Ref Expression
Hypotheses addscut.1
|- ( ph -> X e. No )
addscut.2
|- ( ph -> Y e. No )
Assertion addscld
|- ( ph -> ( X +s Y ) e. No )

Proof

Step Hyp Ref Expression
1 addscut.1
 |-  ( ph -> X e. No )
2 addscut.2
 |-  ( ph -> Y e. No )
3 1 2 addscut
 |-  ( ph -> ( ( X +s Y ) e. No /\ ( { p | E. l e. ( _Left ` X ) p = ( l +s Y ) } u. { q | E. m e. ( _Left ` Y ) q = ( X +s m ) } ) <
4 3 simp1d
 |-  ( ph -> ( X +s Y ) e. No )