Metamath Proof Explorer


Theorem addscl

Description: Surreal numbers are closed under addition. Theorem 6(iii) of [Conway[ p. 18. (Contributed by Scott Fenton, 21-Jan-2025)

Ref Expression
Assertion addscl ( ( 𝐴 No 𝐵 No ) → ( 𝐴 +s 𝐵 ) ∈ No )

Proof

Step Hyp Ref Expression
1 simpl ( ( 𝐴 No 𝐵 No ) → 𝐴 No )
2 simpr ( ( 𝐴 No 𝐵 No ) → 𝐵 No )
3 1 2 addscld ( ( 𝐴 No 𝐵 No ) → ( 𝐴 +s 𝐵 ) ∈ No )