Metamath Proof Explorer


Theorem addsf

Description: Function statement for surreal addition. (Contributed by Scott Fenton, 21-Jan-2025)

Ref Expression
Assertion addsf +s : ( No × No ) ⟶ No

Proof

Step Hyp Ref Expression
1 addsfn +s Fn ( No × No )
2 addscl ( ( 𝑦 No 𝑧 No ) → ( 𝑦 +s 𝑧 ) ∈ No )
3 2 rgen2 𝑦 No 𝑧 No ( 𝑦 +s 𝑧 ) ∈ No
4 fveq2 ( 𝑥 = ⟨ 𝑦 , 𝑧 ⟩ → ( +s𝑥 ) = ( +s ‘ ⟨ 𝑦 , 𝑧 ⟩ ) )
5 df-ov ( 𝑦 +s 𝑧 ) = ( +s ‘ ⟨ 𝑦 , 𝑧 ⟩ )
6 4 5 eqtr4di ( 𝑥 = ⟨ 𝑦 , 𝑧 ⟩ → ( +s𝑥 ) = ( 𝑦 +s 𝑧 ) )
7 6 eleq1d ( 𝑥 = ⟨ 𝑦 , 𝑧 ⟩ → ( ( +s𝑥 ) ∈ No ↔ ( 𝑦 +s 𝑧 ) ∈ No ) )
8 7 ralxp ( ∀ 𝑥 ∈ ( No × No ) ( +s𝑥 ) ∈ No ↔ ∀ 𝑦 No 𝑧 No ( 𝑦 +s 𝑧 ) ∈ No )
9 3 8 mpbir 𝑥 ∈ ( No × No ) ( +s𝑥 ) ∈ No
10 ffnfv ( +s : ( No × No ) ⟶ No ↔ ( +s Fn ( No × No ) ∧ ∀ 𝑥 ∈ ( No × No ) ( +s𝑥 ) ∈ No ) )
11 1 9 10 mpbir2an +s : ( No × No ) ⟶ No