Metamath Proof Explorer


Theorem addsfn

Description: Surreal addition is a function over pairs of surreals. (Contributed by Scott Fenton, 20-Aug-2024)

Ref Expression
Assertion addsfn +s Fn ( No × No )

Proof

Step Hyp Ref Expression
1 df-adds +s = norec2 ( ( 𝑥 ∈ V , 𝑎 ∈ V ↦ ( ( { 𝑦 ∣ ∃ 𝑙 ∈ ( L ‘ ( 1st𝑥 ) ) 𝑦 = ( 𝑙 𝑎 ( 2nd𝑥 ) ) } ∪ { 𝑧 ∣ ∃ 𝑙 ∈ ( L ‘ ( 2nd𝑥 ) ) 𝑧 = ( ( 1st𝑥 ) 𝑎 𝑙 ) } ) |s ( { 𝑦 ∣ ∃ 𝑟 ∈ ( R ‘ ( 1st𝑥 ) ) 𝑦 = ( 𝑟 𝑎 ( 2nd𝑥 ) ) } ∪ { 𝑧 ∣ ∃ 𝑟 ∈ ( R ‘ ( 2nd𝑥 ) ) 𝑧 = ( ( 1st𝑥 ) 𝑎 𝑟 ) } ) ) ) )
2 1 norec2fn +s Fn ( No × No )