Metamath Proof Explorer


Definition df-adds

Description: Define surreal addition. This is the first of the field operations on the surreals. Definition from Conway p. 5. Definition from Goshnor p. 13. (Contributed by Scott Fenton, 20-Aug-2024)

Ref Expression
Assertion df-adds +s = norec2 ( ( 𝑥 ∈ V , 𝑎 ∈ V ↦ ( ( { 𝑦 ∣ ∃ 𝑙 ∈ ( L ‘ ( 1st𝑥 ) ) 𝑦 = ( 𝑙 𝑎 ( 2nd𝑥 ) ) } ∪ { 𝑧 ∣ ∃ 𝑙 ∈ ( L ‘ ( 2nd𝑥 ) ) 𝑧 = ( ( 1st𝑥 ) 𝑎 𝑙 ) } ) |s ( { 𝑦 ∣ ∃ 𝑟 ∈ ( R ‘ ( 1st𝑥 ) ) 𝑦 = ( 𝑟 𝑎 ( 2nd𝑥 ) ) } ∪ { 𝑧 ∣ ∃ 𝑟 ∈ ( R ‘ ( 2nd𝑥 ) ) 𝑧 = ( ( 1st𝑥 ) 𝑎 𝑟 ) } ) ) ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 cadds +s
1 vx 𝑥
2 cvv V
3 va 𝑎
4 vy 𝑦
5 vl 𝑙
6 cleft L
7 c1st 1st
8 1 cv 𝑥
9 8 7 cfv ( 1st𝑥 )
10 9 6 cfv ( L ‘ ( 1st𝑥 ) )
11 4 cv 𝑦
12 5 cv 𝑙
13 3 cv 𝑎
14 c2nd 2nd
15 8 14 cfv ( 2nd𝑥 )
16 12 15 13 co ( 𝑙 𝑎 ( 2nd𝑥 ) )
17 11 16 wceq 𝑦 = ( 𝑙 𝑎 ( 2nd𝑥 ) )
18 17 5 10 wrex 𝑙 ∈ ( L ‘ ( 1st𝑥 ) ) 𝑦 = ( 𝑙 𝑎 ( 2nd𝑥 ) )
19 18 4 cab { 𝑦 ∣ ∃ 𝑙 ∈ ( L ‘ ( 1st𝑥 ) ) 𝑦 = ( 𝑙 𝑎 ( 2nd𝑥 ) ) }
20 vz 𝑧
21 15 6 cfv ( L ‘ ( 2nd𝑥 ) )
22 20 cv 𝑧
23 9 12 13 co ( ( 1st𝑥 ) 𝑎 𝑙 )
24 22 23 wceq 𝑧 = ( ( 1st𝑥 ) 𝑎 𝑙 )
25 24 5 21 wrex 𝑙 ∈ ( L ‘ ( 2nd𝑥 ) ) 𝑧 = ( ( 1st𝑥 ) 𝑎 𝑙 )
26 25 20 cab { 𝑧 ∣ ∃ 𝑙 ∈ ( L ‘ ( 2nd𝑥 ) ) 𝑧 = ( ( 1st𝑥 ) 𝑎 𝑙 ) }
27 19 26 cun ( { 𝑦 ∣ ∃ 𝑙 ∈ ( L ‘ ( 1st𝑥 ) ) 𝑦 = ( 𝑙 𝑎 ( 2nd𝑥 ) ) } ∪ { 𝑧 ∣ ∃ 𝑙 ∈ ( L ‘ ( 2nd𝑥 ) ) 𝑧 = ( ( 1st𝑥 ) 𝑎 𝑙 ) } )
28 cscut |s
29 vr 𝑟
30 cright R
31 9 30 cfv ( R ‘ ( 1st𝑥 ) )
32 29 cv 𝑟
33 32 15 13 co ( 𝑟 𝑎 ( 2nd𝑥 ) )
34 11 33 wceq 𝑦 = ( 𝑟 𝑎 ( 2nd𝑥 ) )
35 34 29 31 wrex 𝑟 ∈ ( R ‘ ( 1st𝑥 ) ) 𝑦 = ( 𝑟 𝑎 ( 2nd𝑥 ) )
36 35 4 cab { 𝑦 ∣ ∃ 𝑟 ∈ ( R ‘ ( 1st𝑥 ) ) 𝑦 = ( 𝑟 𝑎 ( 2nd𝑥 ) ) }
37 15 30 cfv ( R ‘ ( 2nd𝑥 ) )
38 9 32 13 co ( ( 1st𝑥 ) 𝑎 𝑟 )
39 22 38 wceq 𝑧 = ( ( 1st𝑥 ) 𝑎 𝑟 )
40 39 29 37 wrex 𝑟 ∈ ( R ‘ ( 2nd𝑥 ) ) 𝑧 = ( ( 1st𝑥 ) 𝑎 𝑟 )
41 40 20 cab { 𝑧 ∣ ∃ 𝑟 ∈ ( R ‘ ( 2nd𝑥 ) ) 𝑧 = ( ( 1st𝑥 ) 𝑎 𝑟 ) }
42 36 41 cun ( { 𝑦 ∣ ∃ 𝑟 ∈ ( R ‘ ( 1st𝑥 ) ) 𝑦 = ( 𝑟 𝑎 ( 2nd𝑥 ) ) } ∪ { 𝑧 ∣ ∃ 𝑟 ∈ ( R ‘ ( 2nd𝑥 ) ) 𝑧 = ( ( 1st𝑥 ) 𝑎 𝑟 ) } )
43 27 42 28 co ( ( { 𝑦 ∣ ∃ 𝑙 ∈ ( L ‘ ( 1st𝑥 ) ) 𝑦 = ( 𝑙 𝑎 ( 2nd𝑥 ) ) } ∪ { 𝑧 ∣ ∃ 𝑙 ∈ ( L ‘ ( 2nd𝑥 ) ) 𝑧 = ( ( 1st𝑥 ) 𝑎 𝑙 ) } ) |s ( { 𝑦 ∣ ∃ 𝑟 ∈ ( R ‘ ( 1st𝑥 ) ) 𝑦 = ( 𝑟 𝑎 ( 2nd𝑥 ) ) } ∪ { 𝑧 ∣ ∃ 𝑟 ∈ ( R ‘ ( 2nd𝑥 ) ) 𝑧 = ( ( 1st𝑥 ) 𝑎 𝑟 ) } ) )
44 1 3 2 2 43 cmpo ( 𝑥 ∈ V , 𝑎 ∈ V ↦ ( ( { 𝑦 ∣ ∃ 𝑙 ∈ ( L ‘ ( 1st𝑥 ) ) 𝑦 = ( 𝑙 𝑎 ( 2nd𝑥 ) ) } ∪ { 𝑧 ∣ ∃ 𝑙 ∈ ( L ‘ ( 2nd𝑥 ) ) 𝑧 = ( ( 1st𝑥 ) 𝑎 𝑙 ) } ) |s ( { 𝑦 ∣ ∃ 𝑟 ∈ ( R ‘ ( 1st𝑥 ) ) 𝑦 = ( 𝑟 𝑎 ( 2nd𝑥 ) ) } ∪ { 𝑧 ∣ ∃ 𝑟 ∈ ( R ‘ ( 2nd𝑥 ) ) 𝑧 = ( ( 1st𝑥 ) 𝑎 𝑟 ) } ) ) )
45 44 cnorec2 norec2 ( ( 𝑥 ∈ V , 𝑎 ∈ V ↦ ( ( { 𝑦 ∣ ∃ 𝑙 ∈ ( L ‘ ( 1st𝑥 ) ) 𝑦 = ( 𝑙 𝑎 ( 2nd𝑥 ) ) } ∪ { 𝑧 ∣ ∃ 𝑙 ∈ ( L ‘ ( 2nd𝑥 ) ) 𝑧 = ( ( 1st𝑥 ) 𝑎 𝑙 ) } ) |s ( { 𝑦 ∣ ∃ 𝑟 ∈ ( R ‘ ( 1st𝑥 ) ) 𝑦 = ( 𝑟 𝑎 ( 2nd𝑥 ) ) } ∪ { 𝑧 ∣ ∃ 𝑟 ∈ ( R ‘ ( 2nd𝑥 ) ) 𝑧 = ( ( 1st𝑥 ) 𝑎 𝑟 ) } ) ) ) )
46 0 45 wceq +s = norec2 ( ( 𝑥 ∈ V , 𝑎 ∈ V ↦ ( ( { 𝑦 ∣ ∃ 𝑙 ∈ ( L ‘ ( 1st𝑥 ) ) 𝑦 = ( 𝑙 𝑎 ( 2nd𝑥 ) ) } ∪ { 𝑧 ∣ ∃ 𝑙 ∈ ( L ‘ ( 2nd𝑥 ) ) 𝑧 = ( ( 1st𝑥 ) 𝑎 𝑙 ) } ) |s ( { 𝑦 ∣ ∃ 𝑟 ∈ ( R ‘ ( 1st𝑥 ) ) 𝑦 = ( 𝑟 𝑎 ( 2nd𝑥 ) ) } ∪ { 𝑧 ∣ ∃ 𝑟 ∈ ( R ‘ ( 2nd𝑥 ) ) 𝑧 = ( ( 1st𝑥 ) 𝑎 𝑟 ) } ) ) ) )