Step |
Hyp |
Ref |
Expression |
0 |
|
cadds |
|- +s |
1 |
|
vx |
|- x |
2 |
|
cvv |
|- _V |
3 |
|
va |
|- a |
4 |
|
vy |
|- y |
5 |
|
vl |
|- l |
6 |
|
cleft |
|- _L |
7 |
|
c1st |
|- 1st |
8 |
1
|
cv |
|- x |
9 |
8 7
|
cfv |
|- ( 1st ` x ) |
10 |
9 6
|
cfv |
|- ( _L ` ( 1st ` x ) ) |
11 |
4
|
cv |
|- y |
12 |
5
|
cv |
|- l |
13 |
3
|
cv |
|- a |
14 |
|
c2nd |
|- 2nd |
15 |
8 14
|
cfv |
|- ( 2nd ` x ) |
16 |
12 15 13
|
co |
|- ( l a ( 2nd ` x ) ) |
17 |
11 16
|
wceq |
|- y = ( l a ( 2nd ` x ) ) |
18 |
17 5 10
|
wrex |
|- E. l e. ( _L ` ( 1st ` x ) ) y = ( l a ( 2nd ` x ) ) |
19 |
18 4
|
cab |
|- { y | E. l e. ( _L ` ( 1st ` x ) ) y = ( l a ( 2nd ` x ) ) } |
20 |
|
vz |
|- z |
21 |
15 6
|
cfv |
|- ( _L ` ( 2nd ` x ) ) |
22 |
20
|
cv |
|- z |
23 |
9 12 13
|
co |
|- ( ( 1st ` x ) a l ) |
24 |
22 23
|
wceq |
|- z = ( ( 1st ` x ) a l ) |
25 |
24 5 21
|
wrex |
|- E. l e. ( _L ` ( 2nd ` x ) ) z = ( ( 1st ` x ) a l ) |
26 |
25 20
|
cab |
|- { z | E. l e. ( _L ` ( 2nd ` x ) ) z = ( ( 1st ` x ) a l ) } |
27 |
19 26
|
cun |
|- ( { y | E. l e. ( _L ` ( 1st ` x ) ) y = ( l a ( 2nd ` x ) ) } u. { z | E. l e. ( _L ` ( 2nd ` x ) ) z = ( ( 1st ` x ) a l ) } ) |
28 |
|
cscut |
|- |s |
29 |
|
vr |
|- r |
30 |
|
cright |
|- _R |
31 |
9 30
|
cfv |
|- ( _R ` ( 1st ` x ) ) |
32 |
29
|
cv |
|- r |
33 |
32 15 13
|
co |
|- ( r a ( 2nd ` x ) ) |
34 |
11 33
|
wceq |
|- y = ( r a ( 2nd ` x ) ) |
35 |
34 29 31
|
wrex |
|- E. r e. ( _R ` ( 1st ` x ) ) y = ( r a ( 2nd ` x ) ) |
36 |
35 4
|
cab |
|- { y | E. r e. ( _R ` ( 1st ` x ) ) y = ( r a ( 2nd ` x ) ) } |
37 |
15 30
|
cfv |
|- ( _R ` ( 2nd ` x ) ) |
38 |
9 32 13
|
co |
|- ( ( 1st ` x ) a r ) |
39 |
22 38
|
wceq |
|- z = ( ( 1st ` x ) a r ) |
40 |
39 29 37
|
wrex |
|- E. r e. ( _R ` ( 2nd ` x ) ) z = ( ( 1st ` x ) a r ) |
41 |
40 20
|
cab |
|- { z | E. r e. ( _R ` ( 2nd ` x ) ) z = ( ( 1st ` x ) a r ) } |
42 |
36 41
|
cun |
|- ( { y | E. r e. ( _R ` ( 1st ` x ) ) y = ( r a ( 2nd ` x ) ) } u. { z | E. r e. ( _R ` ( 2nd ` x ) ) z = ( ( 1st ` x ) a r ) } ) |
43 |
27 42 28
|
co |
|- ( ( { y | E. l e. ( _L ` ( 1st ` x ) ) y = ( l a ( 2nd ` x ) ) } u. { z | E. l e. ( _L ` ( 2nd ` x ) ) z = ( ( 1st ` x ) a l ) } ) |s ( { y | E. r e. ( _R ` ( 1st ` x ) ) y = ( r a ( 2nd ` x ) ) } u. { z | E. r e. ( _R ` ( 2nd ` x ) ) z = ( ( 1st ` x ) a r ) } ) ) |
44 |
1 3 2 2 43
|
cmpo |
|- ( x e. _V , a e. _V |-> ( ( { y | E. l e. ( _L ` ( 1st ` x ) ) y = ( l a ( 2nd ` x ) ) } u. { z | E. l e. ( _L ` ( 2nd ` x ) ) z = ( ( 1st ` x ) a l ) } ) |s ( { y | E. r e. ( _R ` ( 1st ` x ) ) y = ( r a ( 2nd ` x ) ) } u. { z | E. r e. ( _R ` ( 2nd ` x ) ) z = ( ( 1st ` x ) a r ) } ) ) ) |
45 |
44
|
cnorec2 |
|- norec2 ( ( x e. _V , a e. _V |-> ( ( { y | E. l e. ( _L ` ( 1st ` x ) ) y = ( l a ( 2nd ` x ) ) } u. { z | E. l e. ( _L ` ( 2nd ` x ) ) z = ( ( 1st ` x ) a l ) } ) |s ( { y | E. r e. ( _R ` ( 1st ` x ) ) y = ( r a ( 2nd ` x ) ) } u. { z | E. r e. ( _R ` ( 2nd ` x ) ) z = ( ( 1st ` x ) a r ) } ) ) ) ) |
46 |
0 45
|
wceq |
|- +s = norec2 ( ( x e. _V , a e. _V |-> ( ( { y | E. l e. ( _L ` ( 1st ` x ) ) y = ( l a ( 2nd ` x ) ) } u. { z | E. l e. ( _L ` ( 2nd ` x ) ) z = ( ( 1st ` x ) a l ) } ) |s ( { y | E. r e. ( _R ` ( 1st ` x ) ) y = ( r a ( 2nd ` x ) ) } u. { z | E. r e. ( _R ` ( 2nd ` x ) ) z = ( ( 1st ` x ) a r ) } ) ) ) ) |