| Step |
Hyp |
Ref |
Expression |
| 0 |
|
cadds |
|- +s |
| 1 |
|
vx |
|- x |
| 2 |
|
cvv |
|- _V |
| 3 |
|
va |
|- a |
| 4 |
|
vy |
|- y |
| 5 |
|
vl |
|- l |
| 6 |
|
cleft |
|- _Left |
| 7 |
|
c1st |
|- 1st |
| 8 |
1
|
cv |
|- x |
| 9 |
8 7
|
cfv |
|- ( 1st ` x ) |
| 10 |
9 6
|
cfv |
|- ( _Left ` ( 1st ` x ) ) |
| 11 |
4
|
cv |
|- y |
| 12 |
5
|
cv |
|- l |
| 13 |
3
|
cv |
|- a |
| 14 |
|
c2nd |
|- 2nd |
| 15 |
8 14
|
cfv |
|- ( 2nd ` x ) |
| 16 |
12 15 13
|
co |
|- ( l a ( 2nd ` x ) ) |
| 17 |
11 16
|
wceq |
|- y = ( l a ( 2nd ` x ) ) |
| 18 |
17 5 10
|
wrex |
|- E. l e. ( _Left ` ( 1st ` x ) ) y = ( l a ( 2nd ` x ) ) |
| 19 |
18 4
|
cab |
|- { y | E. l e. ( _Left ` ( 1st ` x ) ) y = ( l a ( 2nd ` x ) ) } |
| 20 |
|
vz |
|- z |
| 21 |
15 6
|
cfv |
|- ( _Left ` ( 2nd ` x ) ) |
| 22 |
20
|
cv |
|- z |
| 23 |
9 12 13
|
co |
|- ( ( 1st ` x ) a l ) |
| 24 |
22 23
|
wceq |
|- z = ( ( 1st ` x ) a l ) |
| 25 |
24 5 21
|
wrex |
|- E. l e. ( _Left ` ( 2nd ` x ) ) z = ( ( 1st ` x ) a l ) |
| 26 |
25 20
|
cab |
|- { z | E. l e. ( _Left ` ( 2nd ` x ) ) z = ( ( 1st ` x ) a l ) } |
| 27 |
19 26
|
cun |
|- ( { y | E. l e. ( _Left ` ( 1st ` x ) ) y = ( l a ( 2nd ` x ) ) } u. { z | E. l e. ( _Left ` ( 2nd ` x ) ) z = ( ( 1st ` x ) a l ) } ) |
| 28 |
|
cscut |
|- |s |
| 29 |
|
vr |
|- r |
| 30 |
|
cright |
|- _Right |
| 31 |
9 30
|
cfv |
|- ( _Right ` ( 1st ` x ) ) |
| 32 |
29
|
cv |
|- r |
| 33 |
32 15 13
|
co |
|- ( r a ( 2nd ` x ) ) |
| 34 |
11 33
|
wceq |
|- y = ( r a ( 2nd ` x ) ) |
| 35 |
34 29 31
|
wrex |
|- E. r e. ( _Right ` ( 1st ` x ) ) y = ( r a ( 2nd ` x ) ) |
| 36 |
35 4
|
cab |
|- { y | E. r e. ( _Right ` ( 1st ` x ) ) y = ( r a ( 2nd ` x ) ) } |
| 37 |
15 30
|
cfv |
|- ( _Right ` ( 2nd ` x ) ) |
| 38 |
9 32 13
|
co |
|- ( ( 1st ` x ) a r ) |
| 39 |
22 38
|
wceq |
|- z = ( ( 1st ` x ) a r ) |
| 40 |
39 29 37
|
wrex |
|- E. r e. ( _Right ` ( 2nd ` x ) ) z = ( ( 1st ` x ) a r ) |
| 41 |
40 20
|
cab |
|- { z | E. r e. ( _Right ` ( 2nd ` x ) ) z = ( ( 1st ` x ) a r ) } |
| 42 |
36 41
|
cun |
|- ( { y | E. r e. ( _Right ` ( 1st ` x ) ) y = ( r a ( 2nd ` x ) ) } u. { z | E. r e. ( _Right ` ( 2nd ` x ) ) z = ( ( 1st ` x ) a r ) } ) |
| 43 |
27 42 28
|
co |
|- ( ( { y | E. l e. ( _Left ` ( 1st ` x ) ) y = ( l a ( 2nd ` x ) ) } u. { z | E. l e. ( _Left ` ( 2nd ` x ) ) z = ( ( 1st ` x ) a l ) } ) |s ( { y | E. r e. ( _Right ` ( 1st ` x ) ) y = ( r a ( 2nd ` x ) ) } u. { z | E. r e. ( _Right ` ( 2nd ` x ) ) z = ( ( 1st ` x ) a r ) } ) ) |
| 44 |
1 3 2 2 43
|
cmpo |
|- ( x e. _V , a e. _V |-> ( ( { y | E. l e. ( _Left ` ( 1st ` x ) ) y = ( l a ( 2nd ` x ) ) } u. { z | E. l e. ( _Left ` ( 2nd ` x ) ) z = ( ( 1st ` x ) a l ) } ) |s ( { y | E. r e. ( _Right ` ( 1st ` x ) ) y = ( r a ( 2nd ` x ) ) } u. { z | E. r e. ( _Right ` ( 2nd ` x ) ) z = ( ( 1st ` x ) a r ) } ) ) ) |
| 45 |
44
|
cnorec2 |
|- norec2 ( ( x e. _V , a e. _V |-> ( ( { y | E. l e. ( _Left ` ( 1st ` x ) ) y = ( l a ( 2nd ` x ) ) } u. { z | E. l e. ( _Left ` ( 2nd ` x ) ) z = ( ( 1st ` x ) a l ) } ) |s ( { y | E. r e. ( _Right ` ( 1st ` x ) ) y = ( r a ( 2nd ` x ) ) } u. { z | E. r e. ( _Right ` ( 2nd ` x ) ) z = ( ( 1st ` x ) a r ) } ) ) ) ) |
| 46 |
0 45
|
wceq |
|- +s = norec2 ( ( x e. _V , a e. _V |-> ( ( { y | E. l e. ( _Left ` ( 1st ` x ) ) y = ( l a ( 2nd ` x ) ) } u. { z | E. l e. ( _Left ` ( 2nd ` x ) ) z = ( ( 1st ` x ) a l ) } ) |s ( { y | E. r e. ( _Right ` ( 1st ` x ) ) y = ( r a ( 2nd ` x ) ) } u. { z | E. r e. ( _Right ` ( 2nd ` x ) ) z = ( ( 1st ` x ) a r ) } ) ) ) ) |