| Step | Hyp | Ref | Expression | 
						
							| 1 |  | df-adds | ⊢  +s   =   norec2  ( ( 𝑥  ∈  V ,  𝑎  ∈  V  ↦  ( ( { 𝑦  ∣  ∃ 𝑙  ∈  (  L  ‘ ( 1st  ‘ 𝑥 ) ) 𝑦  =  ( 𝑙 𝑎 ( 2nd  ‘ 𝑥 ) ) }  ∪  { 𝑧  ∣  ∃ 𝑙  ∈  (  L  ‘ ( 2nd  ‘ 𝑥 ) ) 𝑧  =  ( ( 1st  ‘ 𝑥 ) 𝑎 𝑙 ) } )  |s  ( { 𝑦  ∣  ∃ 𝑟  ∈  (  R  ‘ ( 1st  ‘ 𝑥 ) ) 𝑦  =  ( 𝑟 𝑎 ( 2nd  ‘ 𝑥 ) ) }  ∪  { 𝑧  ∣  ∃ 𝑟  ∈  (  R  ‘ ( 2nd  ‘ 𝑥 ) ) 𝑧  =  ( ( 1st  ‘ 𝑥 ) 𝑎 𝑟 ) } ) ) ) ) | 
						
							| 2 | 1 | norec2ov | ⊢ ( ( 𝐴  ∈   No   ∧  𝐵  ∈   No  )  →  ( 𝐴  +s  𝐵 )  =  ( 〈 𝐴 ,  𝐵 〉 ( 𝑥  ∈  V ,  𝑎  ∈  V  ↦  ( ( { 𝑦  ∣  ∃ 𝑙  ∈  (  L  ‘ ( 1st  ‘ 𝑥 ) ) 𝑦  =  ( 𝑙 𝑎 ( 2nd  ‘ 𝑥 ) ) }  ∪  { 𝑧  ∣  ∃ 𝑙  ∈  (  L  ‘ ( 2nd  ‘ 𝑥 ) ) 𝑧  =  ( ( 1st  ‘ 𝑥 ) 𝑎 𝑙 ) } )  |s  ( { 𝑦  ∣  ∃ 𝑟  ∈  (  R  ‘ ( 1st  ‘ 𝑥 ) ) 𝑦  =  ( 𝑟 𝑎 ( 2nd  ‘ 𝑥 ) ) }  ∪  { 𝑧  ∣  ∃ 𝑟  ∈  (  R  ‘ ( 2nd  ‘ 𝑥 ) ) 𝑧  =  ( ( 1st  ‘ 𝑥 ) 𝑎 𝑟 ) } ) ) ) (  +s   ↾  ( ( ( ( (  L  ‘ 𝐴 )  ∪  (  R  ‘ 𝐴 ) )  ∪  { 𝐴 } )  ×  ( ( (  L  ‘ 𝐵 )  ∪  (  R  ‘ 𝐵 ) )  ∪  { 𝐵 } ) )  ∖  { 〈 𝐴 ,  𝐵 〉 } ) ) ) ) | 
						
							| 3 |  | opex | ⊢ 〈 𝐴 ,  𝐵 〉  ∈  V | 
						
							| 4 |  | addsfn | ⊢  +s   Fn  (  No   ×   No  ) | 
						
							| 5 |  | fnfun | ⊢ (  +s   Fn  (  No   ×   No  )  →  Fun   +s  ) | 
						
							| 6 | 4 5 | ax-mp | ⊢ Fun   +s | 
						
							| 7 |  | fvex | ⊢ (  L  ‘ 𝐴 )  ∈  V | 
						
							| 8 |  | fvex | ⊢ (  R  ‘ 𝐴 )  ∈  V | 
						
							| 9 | 7 8 | unex | ⊢ ( (  L  ‘ 𝐴 )  ∪  (  R  ‘ 𝐴 ) )  ∈  V | 
						
							| 10 |  | snex | ⊢ { 𝐴 }  ∈  V | 
						
							| 11 | 9 10 | unex | ⊢ ( ( (  L  ‘ 𝐴 )  ∪  (  R  ‘ 𝐴 ) )  ∪  { 𝐴 } )  ∈  V | 
						
							| 12 |  | fvex | ⊢ (  L  ‘ 𝐵 )  ∈  V | 
						
							| 13 |  | fvex | ⊢ (  R  ‘ 𝐵 )  ∈  V | 
						
							| 14 | 12 13 | unex | ⊢ ( (  L  ‘ 𝐵 )  ∪  (  R  ‘ 𝐵 ) )  ∈  V | 
						
							| 15 |  | snex | ⊢ { 𝐵 }  ∈  V | 
						
							| 16 | 14 15 | unex | ⊢ ( ( (  L  ‘ 𝐵 )  ∪  (  R  ‘ 𝐵 ) )  ∪  { 𝐵 } )  ∈  V | 
						
							| 17 | 11 16 | xpex | ⊢ ( ( ( (  L  ‘ 𝐴 )  ∪  (  R  ‘ 𝐴 ) )  ∪  { 𝐴 } )  ×  ( ( (  L  ‘ 𝐵 )  ∪  (  R  ‘ 𝐵 ) )  ∪  { 𝐵 } ) )  ∈  V | 
						
							| 18 | 17 | difexi | ⊢ ( ( ( ( (  L  ‘ 𝐴 )  ∪  (  R  ‘ 𝐴 ) )  ∪  { 𝐴 } )  ×  ( ( (  L  ‘ 𝐵 )  ∪  (  R  ‘ 𝐵 ) )  ∪  { 𝐵 } ) )  ∖  { 〈 𝐴 ,  𝐵 〉 } )  ∈  V | 
						
							| 19 |  | resfunexg | ⊢ ( ( Fun   +s   ∧  ( ( ( ( (  L  ‘ 𝐴 )  ∪  (  R  ‘ 𝐴 ) )  ∪  { 𝐴 } )  ×  ( ( (  L  ‘ 𝐵 )  ∪  (  R  ‘ 𝐵 ) )  ∪  { 𝐵 } ) )  ∖  { 〈 𝐴 ,  𝐵 〉 } )  ∈  V )  →  (  +s   ↾  ( ( ( ( (  L  ‘ 𝐴 )  ∪  (  R  ‘ 𝐴 ) )  ∪  { 𝐴 } )  ×  ( ( (  L  ‘ 𝐵 )  ∪  (  R  ‘ 𝐵 ) )  ∪  { 𝐵 } ) )  ∖  { 〈 𝐴 ,  𝐵 〉 } ) )  ∈  V ) | 
						
							| 20 | 6 18 19 | mp2an | ⊢ (  +s   ↾  ( ( ( ( (  L  ‘ 𝐴 )  ∪  (  R  ‘ 𝐴 ) )  ∪  { 𝐴 } )  ×  ( ( (  L  ‘ 𝐵 )  ∪  (  R  ‘ 𝐵 ) )  ∪  { 𝐵 } ) )  ∖  { 〈 𝐴 ,  𝐵 〉 } ) )  ∈  V | 
						
							| 21 |  | 2fveq3 | ⊢ ( 𝑥  =  〈 𝐴 ,  𝐵 〉  →  (  L  ‘ ( 1st  ‘ 𝑥 ) )  =  (  L  ‘ ( 1st  ‘ 〈 𝐴 ,  𝐵 〉 ) ) ) | 
						
							| 22 |  | fveq2 | ⊢ ( 𝑥  =  〈 𝐴 ,  𝐵 〉  →  ( 2nd  ‘ 𝑥 )  =  ( 2nd  ‘ 〈 𝐴 ,  𝐵 〉 ) ) | 
						
							| 23 | 22 | oveq2d | ⊢ ( 𝑥  =  〈 𝐴 ,  𝐵 〉  →  ( 𝑙 𝑎 ( 2nd  ‘ 𝑥 ) )  =  ( 𝑙 𝑎 ( 2nd  ‘ 〈 𝐴 ,  𝐵 〉 ) ) ) | 
						
							| 24 | 23 | eqeq2d | ⊢ ( 𝑥  =  〈 𝐴 ,  𝐵 〉  →  ( 𝑦  =  ( 𝑙 𝑎 ( 2nd  ‘ 𝑥 ) )  ↔  𝑦  =  ( 𝑙 𝑎 ( 2nd  ‘ 〈 𝐴 ,  𝐵 〉 ) ) ) ) | 
						
							| 25 | 21 24 | rexeqbidv | ⊢ ( 𝑥  =  〈 𝐴 ,  𝐵 〉  →  ( ∃ 𝑙  ∈  (  L  ‘ ( 1st  ‘ 𝑥 ) ) 𝑦  =  ( 𝑙 𝑎 ( 2nd  ‘ 𝑥 ) )  ↔  ∃ 𝑙  ∈  (  L  ‘ ( 1st  ‘ 〈 𝐴 ,  𝐵 〉 ) ) 𝑦  =  ( 𝑙 𝑎 ( 2nd  ‘ 〈 𝐴 ,  𝐵 〉 ) ) ) ) | 
						
							| 26 | 25 | abbidv | ⊢ ( 𝑥  =  〈 𝐴 ,  𝐵 〉  →  { 𝑦  ∣  ∃ 𝑙  ∈  (  L  ‘ ( 1st  ‘ 𝑥 ) ) 𝑦  =  ( 𝑙 𝑎 ( 2nd  ‘ 𝑥 ) ) }  =  { 𝑦  ∣  ∃ 𝑙  ∈  (  L  ‘ ( 1st  ‘ 〈 𝐴 ,  𝐵 〉 ) ) 𝑦  =  ( 𝑙 𝑎 ( 2nd  ‘ 〈 𝐴 ,  𝐵 〉 ) ) } ) | 
						
							| 27 |  | 2fveq3 | ⊢ ( 𝑥  =  〈 𝐴 ,  𝐵 〉  →  (  L  ‘ ( 2nd  ‘ 𝑥 ) )  =  (  L  ‘ ( 2nd  ‘ 〈 𝐴 ,  𝐵 〉 ) ) ) | 
						
							| 28 |  | fveq2 | ⊢ ( 𝑥  =  〈 𝐴 ,  𝐵 〉  →  ( 1st  ‘ 𝑥 )  =  ( 1st  ‘ 〈 𝐴 ,  𝐵 〉 ) ) | 
						
							| 29 | 28 | oveq1d | ⊢ ( 𝑥  =  〈 𝐴 ,  𝐵 〉  →  ( ( 1st  ‘ 𝑥 ) 𝑎 𝑙 )  =  ( ( 1st  ‘ 〈 𝐴 ,  𝐵 〉 ) 𝑎 𝑙 ) ) | 
						
							| 30 | 29 | eqeq2d | ⊢ ( 𝑥  =  〈 𝐴 ,  𝐵 〉  →  ( 𝑧  =  ( ( 1st  ‘ 𝑥 ) 𝑎 𝑙 )  ↔  𝑧  =  ( ( 1st  ‘ 〈 𝐴 ,  𝐵 〉 ) 𝑎 𝑙 ) ) ) | 
						
							| 31 | 27 30 | rexeqbidv | ⊢ ( 𝑥  =  〈 𝐴 ,  𝐵 〉  →  ( ∃ 𝑙  ∈  (  L  ‘ ( 2nd  ‘ 𝑥 ) ) 𝑧  =  ( ( 1st  ‘ 𝑥 ) 𝑎 𝑙 )  ↔  ∃ 𝑙  ∈  (  L  ‘ ( 2nd  ‘ 〈 𝐴 ,  𝐵 〉 ) ) 𝑧  =  ( ( 1st  ‘ 〈 𝐴 ,  𝐵 〉 ) 𝑎 𝑙 ) ) ) | 
						
							| 32 | 31 | abbidv | ⊢ ( 𝑥  =  〈 𝐴 ,  𝐵 〉  →  { 𝑧  ∣  ∃ 𝑙  ∈  (  L  ‘ ( 2nd  ‘ 𝑥 ) ) 𝑧  =  ( ( 1st  ‘ 𝑥 ) 𝑎 𝑙 ) }  =  { 𝑧  ∣  ∃ 𝑙  ∈  (  L  ‘ ( 2nd  ‘ 〈 𝐴 ,  𝐵 〉 ) ) 𝑧  =  ( ( 1st  ‘ 〈 𝐴 ,  𝐵 〉 ) 𝑎 𝑙 ) } ) | 
						
							| 33 | 26 32 | uneq12d | ⊢ ( 𝑥  =  〈 𝐴 ,  𝐵 〉  →  ( { 𝑦  ∣  ∃ 𝑙  ∈  (  L  ‘ ( 1st  ‘ 𝑥 ) ) 𝑦  =  ( 𝑙 𝑎 ( 2nd  ‘ 𝑥 ) ) }  ∪  { 𝑧  ∣  ∃ 𝑙  ∈  (  L  ‘ ( 2nd  ‘ 𝑥 ) ) 𝑧  =  ( ( 1st  ‘ 𝑥 ) 𝑎 𝑙 ) } )  =  ( { 𝑦  ∣  ∃ 𝑙  ∈  (  L  ‘ ( 1st  ‘ 〈 𝐴 ,  𝐵 〉 ) ) 𝑦  =  ( 𝑙 𝑎 ( 2nd  ‘ 〈 𝐴 ,  𝐵 〉 ) ) }  ∪  { 𝑧  ∣  ∃ 𝑙  ∈  (  L  ‘ ( 2nd  ‘ 〈 𝐴 ,  𝐵 〉 ) ) 𝑧  =  ( ( 1st  ‘ 〈 𝐴 ,  𝐵 〉 ) 𝑎 𝑙 ) } ) ) | 
						
							| 34 |  | 2fveq3 | ⊢ ( 𝑥  =  〈 𝐴 ,  𝐵 〉  →  (  R  ‘ ( 1st  ‘ 𝑥 ) )  =  (  R  ‘ ( 1st  ‘ 〈 𝐴 ,  𝐵 〉 ) ) ) | 
						
							| 35 | 22 | oveq2d | ⊢ ( 𝑥  =  〈 𝐴 ,  𝐵 〉  →  ( 𝑟 𝑎 ( 2nd  ‘ 𝑥 ) )  =  ( 𝑟 𝑎 ( 2nd  ‘ 〈 𝐴 ,  𝐵 〉 ) ) ) | 
						
							| 36 | 35 | eqeq2d | ⊢ ( 𝑥  =  〈 𝐴 ,  𝐵 〉  →  ( 𝑦  =  ( 𝑟 𝑎 ( 2nd  ‘ 𝑥 ) )  ↔  𝑦  =  ( 𝑟 𝑎 ( 2nd  ‘ 〈 𝐴 ,  𝐵 〉 ) ) ) ) | 
						
							| 37 | 34 36 | rexeqbidv | ⊢ ( 𝑥  =  〈 𝐴 ,  𝐵 〉  →  ( ∃ 𝑟  ∈  (  R  ‘ ( 1st  ‘ 𝑥 ) ) 𝑦  =  ( 𝑟 𝑎 ( 2nd  ‘ 𝑥 ) )  ↔  ∃ 𝑟  ∈  (  R  ‘ ( 1st  ‘ 〈 𝐴 ,  𝐵 〉 ) ) 𝑦  =  ( 𝑟 𝑎 ( 2nd  ‘ 〈 𝐴 ,  𝐵 〉 ) ) ) ) | 
						
							| 38 | 37 | abbidv | ⊢ ( 𝑥  =  〈 𝐴 ,  𝐵 〉  →  { 𝑦  ∣  ∃ 𝑟  ∈  (  R  ‘ ( 1st  ‘ 𝑥 ) ) 𝑦  =  ( 𝑟 𝑎 ( 2nd  ‘ 𝑥 ) ) }  =  { 𝑦  ∣  ∃ 𝑟  ∈  (  R  ‘ ( 1st  ‘ 〈 𝐴 ,  𝐵 〉 ) ) 𝑦  =  ( 𝑟 𝑎 ( 2nd  ‘ 〈 𝐴 ,  𝐵 〉 ) ) } ) | 
						
							| 39 |  | 2fveq3 | ⊢ ( 𝑥  =  〈 𝐴 ,  𝐵 〉  →  (  R  ‘ ( 2nd  ‘ 𝑥 ) )  =  (  R  ‘ ( 2nd  ‘ 〈 𝐴 ,  𝐵 〉 ) ) ) | 
						
							| 40 | 28 | oveq1d | ⊢ ( 𝑥  =  〈 𝐴 ,  𝐵 〉  →  ( ( 1st  ‘ 𝑥 ) 𝑎 𝑟 )  =  ( ( 1st  ‘ 〈 𝐴 ,  𝐵 〉 ) 𝑎 𝑟 ) ) | 
						
							| 41 | 40 | eqeq2d | ⊢ ( 𝑥  =  〈 𝐴 ,  𝐵 〉  →  ( 𝑧  =  ( ( 1st  ‘ 𝑥 ) 𝑎 𝑟 )  ↔  𝑧  =  ( ( 1st  ‘ 〈 𝐴 ,  𝐵 〉 ) 𝑎 𝑟 ) ) ) | 
						
							| 42 | 39 41 | rexeqbidv | ⊢ ( 𝑥  =  〈 𝐴 ,  𝐵 〉  →  ( ∃ 𝑟  ∈  (  R  ‘ ( 2nd  ‘ 𝑥 ) ) 𝑧  =  ( ( 1st  ‘ 𝑥 ) 𝑎 𝑟 )  ↔  ∃ 𝑟  ∈  (  R  ‘ ( 2nd  ‘ 〈 𝐴 ,  𝐵 〉 ) ) 𝑧  =  ( ( 1st  ‘ 〈 𝐴 ,  𝐵 〉 ) 𝑎 𝑟 ) ) ) | 
						
							| 43 | 42 | abbidv | ⊢ ( 𝑥  =  〈 𝐴 ,  𝐵 〉  →  { 𝑧  ∣  ∃ 𝑟  ∈  (  R  ‘ ( 2nd  ‘ 𝑥 ) ) 𝑧  =  ( ( 1st  ‘ 𝑥 ) 𝑎 𝑟 ) }  =  { 𝑧  ∣  ∃ 𝑟  ∈  (  R  ‘ ( 2nd  ‘ 〈 𝐴 ,  𝐵 〉 ) ) 𝑧  =  ( ( 1st  ‘ 〈 𝐴 ,  𝐵 〉 ) 𝑎 𝑟 ) } ) | 
						
							| 44 | 38 43 | uneq12d | ⊢ ( 𝑥  =  〈 𝐴 ,  𝐵 〉  →  ( { 𝑦  ∣  ∃ 𝑟  ∈  (  R  ‘ ( 1st  ‘ 𝑥 ) ) 𝑦  =  ( 𝑟 𝑎 ( 2nd  ‘ 𝑥 ) ) }  ∪  { 𝑧  ∣  ∃ 𝑟  ∈  (  R  ‘ ( 2nd  ‘ 𝑥 ) ) 𝑧  =  ( ( 1st  ‘ 𝑥 ) 𝑎 𝑟 ) } )  =  ( { 𝑦  ∣  ∃ 𝑟  ∈  (  R  ‘ ( 1st  ‘ 〈 𝐴 ,  𝐵 〉 ) ) 𝑦  =  ( 𝑟 𝑎 ( 2nd  ‘ 〈 𝐴 ,  𝐵 〉 ) ) }  ∪  { 𝑧  ∣  ∃ 𝑟  ∈  (  R  ‘ ( 2nd  ‘ 〈 𝐴 ,  𝐵 〉 ) ) 𝑧  =  ( ( 1st  ‘ 〈 𝐴 ,  𝐵 〉 ) 𝑎 𝑟 ) } ) ) | 
						
							| 45 | 33 44 | oveq12d | ⊢ ( 𝑥  =  〈 𝐴 ,  𝐵 〉  →  ( ( { 𝑦  ∣  ∃ 𝑙  ∈  (  L  ‘ ( 1st  ‘ 𝑥 ) ) 𝑦  =  ( 𝑙 𝑎 ( 2nd  ‘ 𝑥 ) ) }  ∪  { 𝑧  ∣  ∃ 𝑙  ∈  (  L  ‘ ( 2nd  ‘ 𝑥 ) ) 𝑧  =  ( ( 1st  ‘ 𝑥 ) 𝑎 𝑙 ) } )  |s  ( { 𝑦  ∣  ∃ 𝑟  ∈  (  R  ‘ ( 1st  ‘ 𝑥 ) ) 𝑦  =  ( 𝑟 𝑎 ( 2nd  ‘ 𝑥 ) ) }  ∪  { 𝑧  ∣  ∃ 𝑟  ∈  (  R  ‘ ( 2nd  ‘ 𝑥 ) ) 𝑧  =  ( ( 1st  ‘ 𝑥 ) 𝑎 𝑟 ) } ) )  =  ( ( { 𝑦  ∣  ∃ 𝑙  ∈  (  L  ‘ ( 1st  ‘ 〈 𝐴 ,  𝐵 〉 ) ) 𝑦  =  ( 𝑙 𝑎 ( 2nd  ‘ 〈 𝐴 ,  𝐵 〉 ) ) }  ∪  { 𝑧  ∣  ∃ 𝑙  ∈  (  L  ‘ ( 2nd  ‘ 〈 𝐴 ,  𝐵 〉 ) ) 𝑧  =  ( ( 1st  ‘ 〈 𝐴 ,  𝐵 〉 ) 𝑎 𝑙 ) } )  |s  ( { 𝑦  ∣  ∃ 𝑟  ∈  (  R  ‘ ( 1st  ‘ 〈 𝐴 ,  𝐵 〉 ) ) 𝑦  =  ( 𝑟 𝑎 ( 2nd  ‘ 〈 𝐴 ,  𝐵 〉 ) ) }  ∪  { 𝑧  ∣  ∃ 𝑟  ∈  (  R  ‘ ( 2nd  ‘ 〈 𝐴 ,  𝐵 〉 ) ) 𝑧  =  ( ( 1st  ‘ 〈 𝐴 ,  𝐵 〉 ) 𝑎 𝑟 ) } ) ) ) | 
						
							| 46 |  | oveq | ⊢ ( 𝑎  =  (  +s   ↾  ( ( ( ( (  L  ‘ 𝐴 )  ∪  (  R  ‘ 𝐴 ) )  ∪  { 𝐴 } )  ×  ( ( (  L  ‘ 𝐵 )  ∪  (  R  ‘ 𝐵 ) )  ∪  { 𝐵 } ) )  ∖  { 〈 𝐴 ,  𝐵 〉 } ) )  →  ( 𝑙 𝑎 ( 2nd  ‘ 〈 𝐴 ,  𝐵 〉 ) )  =  ( 𝑙 (  +s   ↾  ( ( ( ( (  L  ‘ 𝐴 )  ∪  (  R  ‘ 𝐴 ) )  ∪  { 𝐴 } )  ×  ( ( (  L  ‘ 𝐵 )  ∪  (  R  ‘ 𝐵 ) )  ∪  { 𝐵 } ) )  ∖  { 〈 𝐴 ,  𝐵 〉 } ) ) ( 2nd  ‘ 〈 𝐴 ,  𝐵 〉 ) ) ) | 
						
							| 47 | 46 | eqeq2d | ⊢ ( 𝑎  =  (  +s   ↾  ( ( ( ( (  L  ‘ 𝐴 )  ∪  (  R  ‘ 𝐴 ) )  ∪  { 𝐴 } )  ×  ( ( (  L  ‘ 𝐵 )  ∪  (  R  ‘ 𝐵 ) )  ∪  { 𝐵 } ) )  ∖  { 〈 𝐴 ,  𝐵 〉 } ) )  →  ( 𝑦  =  ( 𝑙 𝑎 ( 2nd  ‘ 〈 𝐴 ,  𝐵 〉 ) )  ↔  𝑦  =  ( 𝑙 (  +s   ↾  ( ( ( ( (  L  ‘ 𝐴 )  ∪  (  R  ‘ 𝐴 ) )  ∪  { 𝐴 } )  ×  ( ( (  L  ‘ 𝐵 )  ∪  (  R  ‘ 𝐵 ) )  ∪  { 𝐵 } ) )  ∖  { 〈 𝐴 ,  𝐵 〉 } ) ) ( 2nd  ‘ 〈 𝐴 ,  𝐵 〉 ) ) ) ) | 
						
							| 48 | 47 | rexbidv | ⊢ ( 𝑎  =  (  +s   ↾  ( ( ( ( (  L  ‘ 𝐴 )  ∪  (  R  ‘ 𝐴 ) )  ∪  { 𝐴 } )  ×  ( ( (  L  ‘ 𝐵 )  ∪  (  R  ‘ 𝐵 ) )  ∪  { 𝐵 } ) )  ∖  { 〈 𝐴 ,  𝐵 〉 } ) )  →  ( ∃ 𝑙  ∈  (  L  ‘ ( 1st  ‘ 〈 𝐴 ,  𝐵 〉 ) ) 𝑦  =  ( 𝑙 𝑎 ( 2nd  ‘ 〈 𝐴 ,  𝐵 〉 ) )  ↔  ∃ 𝑙  ∈  (  L  ‘ ( 1st  ‘ 〈 𝐴 ,  𝐵 〉 ) ) 𝑦  =  ( 𝑙 (  +s   ↾  ( ( ( ( (  L  ‘ 𝐴 )  ∪  (  R  ‘ 𝐴 ) )  ∪  { 𝐴 } )  ×  ( ( (  L  ‘ 𝐵 )  ∪  (  R  ‘ 𝐵 ) )  ∪  { 𝐵 } ) )  ∖  { 〈 𝐴 ,  𝐵 〉 } ) ) ( 2nd  ‘ 〈 𝐴 ,  𝐵 〉 ) ) ) ) | 
						
							| 49 | 48 | abbidv | ⊢ ( 𝑎  =  (  +s   ↾  ( ( ( ( (  L  ‘ 𝐴 )  ∪  (  R  ‘ 𝐴 ) )  ∪  { 𝐴 } )  ×  ( ( (  L  ‘ 𝐵 )  ∪  (  R  ‘ 𝐵 ) )  ∪  { 𝐵 } ) )  ∖  { 〈 𝐴 ,  𝐵 〉 } ) )  →  { 𝑦  ∣  ∃ 𝑙  ∈  (  L  ‘ ( 1st  ‘ 〈 𝐴 ,  𝐵 〉 ) ) 𝑦  =  ( 𝑙 𝑎 ( 2nd  ‘ 〈 𝐴 ,  𝐵 〉 ) ) }  =  { 𝑦  ∣  ∃ 𝑙  ∈  (  L  ‘ ( 1st  ‘ 〈 𝐴 ,  𝐵 〉 ) ) 𝑦  =  ( 𝑙 (  +s   ↾  ( ( ( ( (  L  ‘ 𝐴 )  ∪  (  R  ‘ 𝐴 ) )  ∪  { 𝐴 } )  ×  ( ( (  L  ‘ 𝐵 )  ∪  (  R  ‘ 𝐵 ) )  ∪  { 𝐵 } ) )  ∖  { 〈 𝐴 ,  𝐵 〉 } ) ) ( 2nd  ‘ 〈 𝐴 ,  𝐵 〉 ) ) } ) | 
						
							| 50 |  | oveq | ⊢ ( 𝑎  =  (  +s   ↾  ( ( ( ( (  L  ‘ 𝐴 )  ∪  (  R  ‘ 𝐴 ) )  ∪  { 𝐴 } )  ×  ( ( (  L  ‘ 𝐵 )  ∪  (  R  ‘ 𝐵 ) )  ∪  { 𝐵 } ) )  ∖  { 〈 𝐴 ,  𝐵 〉 } ) )  →  ( ( 1st  ‘ 〈 𝐴 ,  𝐵 〉 ) 𝑎 𝑙 )  =  ( ( 1st  ‘ 〈 𝐴 ,  𝐵 〉 ) (  +s   ↾  ( ( ( ( (  L  ‘ 𝐴 )  ∪  (  R  ‘ 𝐴 ) )  ∪  { 𝐴 } )  ×  ( ( (  L  ‘ 𝐵 )  ∪  (  R  ‘ 𝐵 ) )  ∪  { 𝐵 } ) )  ∖  { 〈 𝐴 ,  𝐵 〉 } ) ) 𝑙 ) ) | 
						
							| 51 | 50 | eqeq2d | ⊢ ( 𝑎  =  (  +s   ↾  ( ( ( ( (  L  ‘ 𝐴 )  ∪  (  R  ‘ 𝐴 ) )  ∪  { 𝐴 } )  ×  ( ( (  L  ‘ 𝐵 )  ∪  (  R  ‘ 𝐵 ) )  ∪  { 𝐵 } ) )  ∖  { 〈 𝐴 ,  𝐵 〉 } ) )  →  ( 𝑧  =  ( ( 1st  ‘ 〈 𝐴 ,  𝐵 〉 ) 𝑎 𝑙 )  ↔  𝑧  =  ( ( 1st  ‘ 〈 𝐴 ,  𝐵 〉 ) (  +s   ↾  ( ( ( ( (  L  ‘ 𝐴 )  ∪  (  R  ‘ 𝐴 ) )  ∪  { 𝐴 } )  ×  ( ( (  L  ‘ 𝐵 )  ∪  (  R  ‘ 𝐵 ) )  ∪  { 𝐵 } ) )  ∖  { 〈 𝐴 ,  𝐵 〉 } ) ) 𝑙 ) ) ) | 
						
							| 52 | 51 | rexbidv | ⊢ ( 𝑎  =  (  +s   ↾  ( ( ( ( (  L  ‘ 𝐴 )  ∪  (  R  ‘ 𝐴 ) )  ∪  { 𝐴 } )  ×  ( ( (  L  ‘ 𝐵 )  ∪  (  R  ‘ 𝐵 ) )  ∪  { 𝐵 } ) )  ∖  { 〈 𝐴 ,  𝐵 〉 } ) )  →  ( ∃ 𝑙  ∈  (  L  ‘ ( 2nd  ‘ 〈 𝐴 ,  𝐵 〉 ) ) 𝑧  =  ( ( 1st  ‘ 〈 𝐴 ,  𝐵 〉 ) 𝑎 𝑙 )  ↔  ∃ 𝑙  ∈  (  L  ‘ ( 2nd  ‘ 〈 𝐴 ,  𝐵 〉 ) ) 𝑧  =  ( ( 1st  ‘ 〈 𝐴 ,  𝐵 〉 ) (  +s   ↾  ( ( ( ( (  L  ‘ 𝐴 )  ∪  (  R  ‘ 𝐴 ) )  ∪  { 𝐴 } )  ×  ( ( (  L  ‘ 𝐵 )  ∪  (  R  ‘ 𝐵 ) )  ∪  { 𝐵 } ) )  ∖  { 〈 𝐴 ,  𝐵 〉 } ) ) 𝑙 ) ) ) | 
						
							| 53 | 52 | abbidv | ⊢ ( 𝑎  =  (  +s   ↾  ( ( ( ( (  L  ‘ 𝐴 )  ∪  (  R  ‘ 𝐴 ) )  ∪  { 𝐴 } )  ×  ( ( (  L  ‘ 𝐵 )  ∪  (  R  ‘ 𝐵 ) )  ∪  { 𝐵 } ) )  ∖  { 〈 𝐴 ,  𝐵 〉 } ) )  →  { 𝑧  ∣  ∃ 𝑙  ∈  (  L  ‘ ( 2nd  ‘ 〈 𝐴 ,  𝐵 〉 ) ) 𝑧  =  ( ( 1st  ‘ 〈 𝐴 ,  𝐵 〉 ) 𝑎 𝑙 ) }  =  { 𝑧  ∣  ∃ 𝑙  ∈  (  L  ‘ ( 2nd  ‘ 〈 𝐴 ,  𝐵 〉 ) ) 𝑧  =  ( ( 1st  ‘ 〈 𝐴 ,  𝐵 〉 ) (  +s   ↾  ( ( ( ( (  L  ‘ 𝐴 )  ∪  (  R  ‘ 𝐴 ) )  ∪  { 𝐴 } )  ×  ( ( (  L  ‘ 𝐵 )  ∪  (  R  ‘ 𝐵 ) )  ∪  { 𝐵 } ) )  ∖  { 〈 𝐴 ,  𝐵 〉 } ) ) 𝑙 ) } ) | 
						
							| 54 | 49 53 | uneq12d | ⊢ ( 𝑎  =  (  +s   ↾  ( ( ( ( (  L  ‘ 𝐴 )  ∪  (  R  ‘ 𝐴 ) )  ∪  { 𝐴 } )  ×  ( ( (  L  ‘ 𝐵 )  ∪  (  R  ‘ 𝐵 ) )  ∪  { 𝐵 } ) )  ∖  { 〈 𝐴 ,  𝐵 〉 } ) )  →  ( { 𝑦  ∣  ∃ 𝑙  ∈  (  L  ‘ ( 1st  ‘ 〈 𝐴 ,  𝐵 〉 ) ) 𝑦  =  ( 𝑙 𝑎 ( 2nd  ‘ 〈 𝐴 ,  𝐵 〉 ) ) }  ∪  { 𝑧  ∣  ∃ 𝑙  ∈  (  L  ‘ ( 2nd  ‘ 〈 𝐴 ,  𝐵 〉 ) ) 𝑧  =  ( ( 1st  ‘ 〈 𝐴 ,  𝐵 〉 ) 𝑎 𝑙 ) } )  =  ( { 𝑦  ∣  ∃ 𝑙  ∈  (  L  ‘ ( 1st  ‘ 〈 𝐴 ,  𝐵 〉 ) ) 𝑦  =  ( 𝑙 (  +s   ↾  ( ( ( ( (  L  ‘ 𝐴 )  ∪  (  R  ‘ 𝐴 ) )  ∪  { 𝐴 } )  ×  ( ( (  L  ‘ 𝐵 )  ∪  (  R  ‘ 𝐵 ) )  ∪  { 𝐵 } ) )  ∖  { 〈 𝐴 ,  𝐵 〉 } ) ) ( 2nd  ‘ 〈 𝐴 ,  𝐵 〉 ) ) }  ∪  { 𝑧  ∣  ∃ 𝑙  ∈  (  L  ‘ ( 2nd  ‘ 〈 𝐴 ,  𝐵 〉 ) ) 𝑧  =  ( ( 1st  ‘ 〈 𝐴 ,  𝐵 〉 ) (  +s   ↾  ( ( ( ( (  L  ‘ 𝐴 )  ∪  (  R  ‘ 𝐴 ) )  ∪  { 𝐴 } )  ×  ( ( (  L  ‘ 𝐵 )  ∪  (  R  ‘ 𝐵 ) )  ∪  { 𝐵 } ) )  ∖  { 〈 𝐴 ,  𝐵 〉 } ) ) 𝑙 ) } ) ) | 
						
							| 55 |  | oveq | ⊢ ( 𝑎  =  (  +s   ↾  ( ( ( ( (  L  ‘ 𝐴 )  ∪  (  R  ‘ 𝐴 ) )  ∪  { 𝐴 } )  ×  ( ( (  L  ‘ 𝐵 )  ∪  (  R  ‘ 𝐵 ) )  ∪  { 𝐵 } ) )  ∖  { 〈 𝐴 ,  𝐵 〉 } ) )  →  ( 𝑟 𝑎 ( 2nd  ‘ 〈 𝐴 ,  𝐵 〉 ) )  =  ( 𝑟 (  +s   ↾  ( ( ( ( (  L  ‘ 𝐴 )  ∪  (  R  ‘ 𝐴 ) )  ∪  { 𝐴 } )  ×  ( ( (  L  ‘ 𝐵 )  ∪  (  R  ‘ 𝐵 ) )  ∪  { 𝐵 } ) )  ∖  { 〈 𝐴 ,  𝐵 〉 } ) ) ( 2nd  ‘ 〈 𝐴 ,  𝐵 〉 ) ) ) | 
						
							| 56 | 55 | eqeq2d | ⊢ ( 𝑎  =  (  +s   ↾  ( ( ( ( (  L  ‘ 𝐴 )  ∪  (  R  ‘ 𝐴 ) )  ∪  { 𝐴 } )  ×  ( ( (  L  ‘ 𝐵 )  ∪  (  R  ‘ 𝐵 ) )  ∪  { 𝐵 } ) )  ∖  { 〈 𝐴 ,  𝐵 〉 } ) )  →  ( 𝑦  =  ( 𝑟 𝑎 ( 2nd  ‘ 〈 𝐴 ,  𝐵 〉 ) )  ↔  𝑦  =  ( 𝑟 (  +s   ↾  ( ( ( ( (  L  ‘ 𝐴 )  ∪  (  R  ‘ 𝐴 ) )  ∪  { 𝐴 } )  ×  ( ( (  L  ‘ 𝐵 )  ∪  (  R  ‘ 𝐵 ) )  ∪  { 𝐵 } ) )  ∖  { 〈 𝐴 ,  𝐵 〉 } ) ) ( 2nd  ‘ 〈 𝐴 ,  𝐵 〉 ) ) ) ) | 
						
							| 57 | 56 | rexbidv | ⊢ ( 𝑎  =  (  +s   ↾  ( ( ( ( (  L  ‘ 𝐴 )  ∪  (  R  ‘ 𝐴 ) )  ∪  { 𝐴 } )  ×  ( ( (  L  ‘ 𝐵 )  ∪  (  R  ‘ 𝐵 ) )  ∪  { 𝐵 } ) )  ∖  { 〈 𝐴 ,  𝐵 〉 } ) )  →  ( ∃ 𝑟  ∈  (  R  ‘ ( 1st  ‘ 〈 𝐴 ,  𝐵 〉 ) ) 𝑦  =  ( 𝑟 𝑎 ( 2nd  ‘ 〈 𝐴 ,  𝐵 〉 ) )  ↔  ∃ 𝑟  ∈  (  R  ‘ ( 1st  ‘ 〈 𝐴 ,  𝐵 〉 ) ) 𝑦  =  ( 𝑟 (  +s   ↾  ( ( ( ( (  L  ‘ 𝐴 )  ∪  (  R  ‘ 𝐴 ) )  ∪  { 𝐴 } )  ×  ( ( (  L  ‘ 𝐵 )  ∪  (  R  ‘ 𝐵 ) )  ∪  { 𝐵 } ) )  ∖  { 〈 𝐴 ,  𝐵 〉 } ) ) ( 2nd  ‘ 〈 𝐴 ,  𝐵 〉 ) ) ) ) | 
						
							| 58 | 57 | abbidv | ⊢ ( 𝑎  =  (  +s   ↾  ( ( ( ( (  L  ‘ 𝐴 )  ∪  (  R  ‘ 𝐴 ) )  ∪  { 𝐴 } )  ×  ( ( (  L  ‘ 𝐵 )  ∪  (  R  ‘ 𝐵 ) )  ∪  { 𝐵 } ) )  ∖  { 〈 𝐴 ,  𝐵 〉 } ) )  →  { 𝑦  ∣  ∃ 𝑟  ∈  (  R  ‘ ( 1st  ‘ 〈 𝐴 ,  𝐵 〉 ) ) 𝑦  =  ( 𝑟 𝑎 ( 2nd  ‘ 〈 𝐴 ,  𝐵 〉 ) ) }  =  { 𝑦  ∣  ∃ 𝑟  ∈  (  R  ‘ ( 1st  ‘ 〈 𝐴 ,  𝐵 〉 ) ) 𝑦  =  ( 𝑟 (  +s   ↾  ( ( ( ( (  L  ‘ 𝐴 )  ∪  (  R  ‘ 𝐴 ) )  ∪  { 𝐴 } )  ×  ( ( (  L  ‘ 𝐵 )  ∪  (  R  ‘ 𝐵 ) )  ∪  { 𝐵 } ) )  ∖  { 〈 𝐴 ,  𝐵 〉 } ) ) ( 2nd  ‘ 〈 𝐴 ,  𝐵 〉 ) ) } ) | 
						
							| 59 |  | oveq | ⊢ ( 𝑎  =  (  +s   ↾  ( ( ( ( (  L  ‘ 𝐴 )  ∪  (  R  ‘ 𝐴 ) )  ∪  { 𝐴 } )  ×  ( ( (  L  ‘ 𝐵 )  ∪  (  R  ‘ 𝐵 ) )  ∪  { 𝐵 } ) )  ∖  { 〈 𝐴 ,  𝐵 〉 } ) )  →  ( ( 1st  ‘ 〈 𝐴 ,  𝐵 〉 ) 𝑎 𝑟 )  =  ( ( 1st  ‘ 〈 𝐴 ,  𝐵 〉 ) (  +s   ↾  ( ( ( ( (  L  ‘ 𝐴 )  ∪  (  R  ‘ 𝐴 ) )  ∪  { 𝐴 } )  ×  ( ( (  L  ‘ 𝐵 )  ∪  (  R  ‘ 𝐵 ) )  ∪  { 𝐵 } ) )  ∖  { 〈 𝐴 ,  𝐵 〉 } ) ) 𝑟 ) ) | 
						
							| 60 | 59 | eqeq2d | ⊢ ( 𝑎  =  (  +s   ↾  ( ( ( ( (  L  ‘ 𝐴 )  ∪  (  R  ‘ 𝐴 ) )  ∪  { 𝐴 } )  ×  ( ( (  L  ‘ 𝐵 )  ∪  (  R  ‘ 𝐵 ) )  ∪  { 𝐵 } ) )  ∖  { 〈 𝐴 ,  𝐵 〉 } ) )  →  ( 𝑧  =  ( ( 1st  ‘ 〈 𝐴 ,  𝐵 〉 ) 𝑎 𝑟 )  ↔  𝑧  =  ( ( 1st  ‘ 〈 𝐴 ,  𝐵 〉 ) (  +s   ↾  ( ( ( ( (  L  ‘ 𝐴 )  ∪  (  R  ‘ 𝐴 ) )  ∪  { 𝐴 } )  ×  ( ( (  L  ‘ 𝐵 )  ∪  (  R  ‘ 𝐵 ) )  ∪  { 𝐵 } ) )  ∖  { 〈 𝐴 ,  𝐵 〉 } ) ) 𝑟 ) ) ) | 
						
							| 61 | 60 | rexbidv | ⊢ ( 𝑎  =  (  +s   ↾  ( ( ( ( (  L  ‘ 𝐴 )  ∪  (  R  ‘ 𝐴 ) )  ∪  { 𝐴 } )  ×  ( ( (  L  ‘ 𝐵 )  ∪  (  R  ‘ 𝐵 ) )  ∪  { 𝐵 } ) )  ∖  { 〈 𝐴 ,  𝐵 〉 } ) )  →  ( ∃ 𝑟  ∈  (  R  ‘ ( 2nd  ‘ 〈 𝐴 ,  𝐵 〉 ) ) 𝑧  =  ( ( 1st  ‘ 〈 𝐴 ,  𝐵 〉 ) 𝑎 𝑟 )  ↔  ∃ 𝑟  ∈  (  R  ‘ ( 2nd  ‘ 〈 𝐴 ,  𝐵 〉 ) ) 𝑧  =  ( ( 1st  ‘ 〈 𝐴 ,  𝐵 〉 ) (  +s   ↾  ( ( ( ( (  L  ‘ 𝐴 )  ∪  (  R  ‘ 𝐴 ) )  ∪  { 𝐴 } )  ×  ( ( (  L  ‘ 𝐵 )  ∪  (  R  ‘ 𝐵 ) )  ∪  { 𝐵 } ) )  ∖  { 〈 𝐴 ,  𝐵 〉 } ) ) 𝑟 ) ) ) | 
						
							| 62 | 61 | abbidv | ⊢ ( 𝑎  =  (  +s   ↾  ( ( ( ( (  L  ‘ 𝐴 )  ∪  (  R  ‘ 𝐴 ) )  ∪  { 𝐴 } )  ×  ( ( (  L  ‘ 𝐵 )  ∪  (  R  ‘ 𝐵 ) )  ∪  { 𝐵 } ) )  ∖  { 〈 𝐴 ,  𝐵 〉 } ) )  →  { 𝑧  ∣  ∃ 𝑟  ∈  (  R  ‘ ( 2nd  ‘ 〈 𝐴 ,  𝐵 〉 ) ) 𝑧  =  ( ( 1st  ‘ 〈 𝐴 ,  𝐵 〉 ) 𝑎 𝑟 ) }  =  { 𝑧  ∣  ∃ 𝑟  ∈  (  R  ‘ ( 2nd  ‘ 〈 𝐴 ,  𝐵 〉 ) ) 𝑧  =  ( ( 1st  ‘ 〈 𝐴 ,  𝐵 〉 ) (  +s   ↾  ( ( ( ( (  L  ‘ 𝐴 )  ∪  (  R  ‘ 𝐴 ) )  ∪  { 𝐴 } )  ×  ( ( (  L  ‘ 𝐵 )  ∪  (  R  ‘ 𝐵 ) )  ∪  { 𝐵 } ) )  ∖  { 〈 𝐴 ,  𝐵 〉 } ) ) 𝑟 ) } ) | 
						
							| 63 | 58 62 | uneq12d | ⊢ ( 𝑎  =  (  +s   ↾  ( ( ( ( (  L  ‘ 𝐴 )  ∪  (  R  ‘ 𝐴 ) )  ∪  { 𝐴 } )  ×  ( ( (  L  ‘ 𝐵 )  ∪  (  R  ‘ 𝐵 ) )  ∪  { 𝐵 } ) )  ∖  { 〈 𝐴 ,  𝐵 〉 } ) )  →  ( { 𝑦  ∣  ∃ 𝑟  ∈  (  R  ‘ ( 1st  ‘ 〈 𝐴 ,  𝐵 〉 ) ) 𝑦  =  ( 𝑟 𝑎 ( 2nd  ‘ 〈 𝐴 ,  𝐵 〉 ) ) }  ∪  { 𝑧  ∣  ∃ 𝑟  ∈  (  R  ‘ ( 2nd  ‘ 〈 𝐴 ,  𝐵 〉 ) ) 𝑧  =  ( ( 1st  ‘ 〈 𝐴 ,  𝐵 〉 ) 𝑎 𝑟 ) } )  =  ( { 𝑦  ∣  ∃ 𝑟  ∈  (  R  ‘ ( 1st  ‘ 〈 𝐴 ,  𝐵 〉 ) ) 𝑦  =  ( 𝑟 (  +s   ↾  ( ( ( ( (  L  ‘ 𝐴 )  ∪  (  R  ‘ 𝐴 ) )  ∪  { 𝐴 } )  ×  ( ( (  L  ‘ 𝐵 )  ∪  (  R  ‘ 𝐵 ) )  ∪  { 𝐵 } ) )  ∖  { 〈 𝐴 ,  𝐵 〉 } ) ) ( 2nd  ‘ 〈 𝐴 ,  𝐵 〉 ) ) }  ∪  { 𝑧  ∣  ∃ 𝑟  ∈  (  R  ‘ ( 2nd  ‘ 〈 𝐴 ,  𝐵 〉 ) ) 𝑧  =  ( ( 1st  ‘ 〈 𝐴 ,  𝐵 〉 ) (  +s   ↾  ( ( ( ( (  L  ‘ 𝐴 )  ∪  (  R  ‘ 𝐴 ) )  ∪  { 𝐴 } )  ×  ( ( (  L  ‘ 𝐵 )  ∪  (  R  ‘ 𝐵 ) )  ∪  { 𝐵 } ) )  ∖  { 〈 𝐴 ,  𝐵 〉 } ) ) 𝑟 ) } ) ) | 
						
							| 64 | 54 63 | oveq12d | ⊢ ( 𝑎  =  (  +s   ↾  ( ( ( ( (  L  ‘ 𝐴 )  ∪  (  R  ‘ 𝐴 ) )  ∪  { 𝐴 } )  ×  ( ( (  L  ‘ 𝐵 )  ∪  (  R  ‘ 𝐵 ) )  ∪  { 𝐵 } ) )  ∖  { 〈 𝐴 ,  𝐵 〉 } ) )  →  ( ( { 𝑦  ∣  ∃ 𝑙  ∈  (  L  ‘ ( 1st  ‘ 〈 𝐴 ,  𝐵 〉 ) ) 𝑦  =  ( 𝑙 𝑎 ( 2nd  ‘ 〈 𝐴 ,  𝐵 〉 ) ) }  ∪  { 𝑧  ∣  ∃ 𝑙  ∈  (  L  ‘ ( 2nd  ‘ 〈 𝐴 ,  𝐵 〉 ) ) 𝑧  =  ( ( 1st  ‘ 〈 𝐴 ,  𝐵 〉 ) 𝑎 𝑙 ) } )  |s  ( { 𝑦  ∣  ∃ 𝑟  ∈  (  R  ‘ ( 1st  ‘ 〈 𝐴 ,  𝐵 〉 ) ) 𝑦  =  ( 𝑟 𝑎 ( 2nd  ‘ 〈 𝐴 ,  𝐵 〉 ) ) }  ∪  { 𝑧  ∣  ∃ 𝑟  ∈  (  R  ‘ ( 2nd  ‘ 〈 𝐴 ,  𝐵 〉 ) ) 𝑧  =  ( ( 1st  ‘ 〈 𝐴 ,  𝐵 〉 ) 𝑎 𝑟 ) } ) )  =  ( ( { 𝑦  ∣  ∃ 𝑙  ∈  (  L  ‘ ( 1st  ‘ 〈 𝐴 ,  𝐵 〉 ) ) 𝑦  =  ( 𝑙 (  +s   ↾  ( ( ( ( (  L  ‘ 𝐴 )  ∪  (  R  ‘ 𝐴 ) )  ∪  { 𝐴 } )  ×  ( ( (  L  ‘ 𝐵 )  ∪  (  R  ‘ 𝐵 ) )  ∪  { 𝐵 } ) )  ∖  { 〈 𝐴 ,  𝐵 〉 } ) ) ( 2nd  ‘ 〈 𝐴 ,  𝐵 〉 ) ) }  ∪  { 𝑧  ∣  ∃ 𝑙  ∈  (  L  ‘ ( 2nd  ‘ 〈 𝐴 ,  𝐵 〉 ) ) 𝑧  =  ( ( 1st  ‘ 〈 𝐴 ,  𝐵 〉 ) (  +s   ↾  ( ( ( ( (  L  ‘ 𝐴 )  ∪  (  R  ‘ 𝐴 ) )  ∪  { 𝐴 } )  ×  ( ( (  L  ‘ 𝐵 )  ∪  (  R  ‘ 𝐵 ) )  ∪  { 𝐵 } ) )  ∖  { 〈 𝐴 ,  𝐵 〉 } ) ) 𝑙 ) } )  |s  ( { 𝑦  ∣  ∃ 𝑟  ∈  (  R  ‘ ( 1st  ‘ 〈 𝐴 ,  𝐵 〉 ) ) 𝑦  =  ( 𝑟 (  +s   ↾  ( ( ( ( (  L  ‘ 𝐴 )  ∪  (  R  ‘ 𝐴 ) )  ∪  { 𝐴 } )  ×  ( ( (  L  ‘ 𝐵 )  ∪  (  R  ‘ 𝐵 ) )  ∪  { 𝐵 } ) )  ∖  { 〈 𝐴 ,  𝐵 〉 } ) ) ( 2nd  ‘ 〈 𝐴 ,  𝐵 〉 ) ) }  ∪  { 𝑧  ∣  ∃ 𝑟  ∈  (  R  ‘ ( 2nd  ‘ 〈 𝐴 ,  𝐵 〉 ) ) 𝑧  =  ( ( 1st  ‘ 〈 𝐴 ,  𝐵 〉 ) (  +s   ↾  ( ( ( ( (  L  ‘ 𝐴 )  ∪  (  R  ‘ 𝐴 ) )  ∪  { 𝐴 } )  ×  ( ( (  L  ‘ 𝐵 )  ∪  (  R  ‘ 𝐵 ) )  ∪  { 𝐵 } ) )  ∖  { 〈 𝐴 ,  𝐵 〉 } ) ) 𝑟 ) } ) ) ) | 
						
							| 65 |  | eqid | ⊢ ( 𝑥  ∈  V ,  𝑎  ∈  V  ↦  ( ( { 𝑦  ∣  ∃ 𝑙  ∈  (  L  ‘ ( 1st  ‘ 𝑥 ) ) 𝑦  =  ( 𝑙 𝑎 ( 2nd  ‘ 𝑥 ) ) }  ∪  { 𝑧  ∣  ∃ 𝑙  ∈  (  L  ‘ ( 2nd  ‘ 𝑥 ) ) 𝑧  =  ( ( 1st  ‘ 𝑥 ) 𝑎 𝑙 ) } )  |s  ( { 𝑦  ∣  ∃ 𝑟  ∈  (  R  ‘ ( 1st  ‘ 𝑥 ) ) 𝑦  =  ( 𝑟 𝑎 ( 2nd  ‘ 𝑥 ) ) }  ∪  { 𝑧  ∣  ∃ 𝑟  ∈  (  R  ‘ ( 2nd  ‘ 𝑥 ) ) 𝑧  =  ( ( 1st  ‘ 𝑥 ) 𝑎 𝑟 ) } ) ) )  =  ( 𝑥  ∈  V ,  𝑎  ∈  V  ↦  ( ( { 𝑦  ∣  ∃ 𝑙  ∈  (  L  ‘ ( 1st  ‘ 𝑥 ) ) 𝑦  =  ( 𝑙 𝑎 ( 2nd  ‘ 𝑥 ) ) }  ∪  { 𝑧  ∣  ∃ 𝑙  ∈  (  L  ‘ ( 2nd  ‘ 𝑥 ) ) 𝑧  =  ( ( 1st  ‘ 𝑥 ) 𝑎 𝑙 ) } )  |s  ( { 𝑦  ∣  ∃ 𝑟  ∈  (  R  ‘ ( 1st  ‘ 𝑥 ) ) 𝑦  =  ( 𝑟 𝑎 ( 2nd  ‘ 𝑥 ) ) }  ∪  { 𝑧  ∣  ∃ 𝑟  ∈  (  R  ‘ ( 2nd  ‘ 𝑥 ) ) 𝑧  =  ( ( 1st  ‘ 𝑥 ) 𝑎 𝑟 ) } ) ) ) | 
						
							| 66 |  | ovex | ⊢ ( ( { 𝑦  ∣  ∃ 𝑙  ∈  (  L  ‘ ( 1st  ‘ 〈 𝐴 ,  𝐵 〉 ) ) 𝑦  =  ( 𝑙 (  +s   ↾  ( ( ( ( (  L  ‘ 𝐴 )  ∪  (  R  ‘ 𝐴 ) )  ∪  { 𝐴 } )  ×  ( ( (  L  ‘ 𝐵 )  ∪  (  R  ‘ 𝐵 ) )  ∪  { 𝐵 } ) )  ∖  { 〈 𝐴 ,  𝐵 〉 } ) ) ( 2nd  ‘ 〈 𝐴 ,  𝐵 〉 ) ) }  ∪  { 𝑧  ∣  ∃ 𝑙  ∈  (  L  ‘ ( 2nd  ‘ 〈 𝐴 ,  𝐵 〉 ) ) 𝑧  =  ( ( 1st  ‘ 〈 𝐴 ,  𝐵 〉 ) (  +s   ↾  ( ( ( ( (  L  ‘ 𝐴 )  ∪  (  R  ‘ 𝐴 ) )  ∪  { 𝐴 } )  ×  ( ( (  L  ‘ 𝐵 )  ∪  (  R  ‘ 𝐵 ) )  ∪  { 𝐵 } ) )  ∖  { 〈 𝐴 ,  𝐵 〉 } ) ) 𝑙 ) } )  |s  ( { 𝑦  ∣  ∃ 𝑟  ∈  (  R  ‘ ( 1st  ‘ 〈 𝐴 ,  𝐵 〉 ) ) 𝑦  =  ( 𝑟 (  +s   ↾  ( ( ( ( (  L  ‘ 𝐴 )  ∪  (  R  ‘ 𝐴 ) )  ∪  { 𝐴 } )  ×  ( ( (  L  ‘ 𝐵 )  ∪  (  R  ‘ 𝐵 ) )  ∪  { 𝐵 } ) )  ∖  { 〈 𝐴 ,  𝐵 〉 } ) ) ( 2nd  ‘ 〈 𝐴 ,  𝐵 〉 ) ) }  ∪  { 𝑧  ∣  ∃ 𝑟  ∈  (  R  ‘ ( 2nd  ‘ 〈 𝐴 ,  𝐵 〉 ) ) 𝑧  =  ( ( 1st  ‘ 〈 𝐴 ,  𝐵 〉 ) (  +s   ↾  ( ( ( ( (  L  ‘ 𝐴 )  ∪  (  R  ‘ 𝐴 ) )  ∪  { 𝐴 } )  ×  ( ( (  L  ‘ 𝐵 )  ∪  (  R  ‘ 𝐵 ) )  ∪  { 𝐵 } ) )  ∖  { 〈 𝐴 ,  𝐵 〉 } ) ) 𝑟 ) } ) )  ∈  V | 
						
							| 67 | 45 64 65 66 | ovmpo | ⊢ ( ( 〈 𝐴 ,  𝐵 〉  ∈  V  ∧  (  +s   ↾  ( ( ( ( (  L  ‘ 𝐴 )  ∪  (  R  ‘ 𝐴 ) )  ∪  { 𝐴 } )  ×  ( ( (  L  ‘ 𝐵 )  ∪  (  R  ‘ 𝐵 ) )  ∪  { 𝐵 } ) )  ∖  { 〈 𝐴 ,  𝐵 〉 } ) )  ∈  V )  →  ( 〈 𝐴 ,  𝐵 〉 ( 𝑥  ∈  V ,  𝑎  ∈  V  ↦  ( ( { 𝑦  ∣  ∃ 𝑙  ∈  (  L  ‘ ( 1st  ‘ 𝑥 ) ) 𝑦  =  ( 𝑙 𝑎 ( 2nd  ‘ 𝑥 ) ) }  ∪  { 𝑧  ∣  ∃ 𝑙  ∈  (  L  ‘ ( 2nd  ‘ 𝑥 ) ) 𝑧  =  ( ( 1st  ‘ 𝑥 ) 𝑎 𝑙 ) } )  |s  ( { 𝑦  ∣  ∃ 𝑟  ∈  (  R  ‘ ( 1st  ‘ 𝑥 ) ) 𝑦  =  ( 𝑟 𝑎 ( 2nd  ‘ 𝑥 ) ) }  ∪  { 𝑧  ∣  ∃ 𝑟  ∈  (  R  ‘ ( 2nd  ‘ 𝑥 ) ) 𝑧  =  ( ( 1st  ‘ 𝑥 ) 𝑎 𝑟 ) } ) ) ) (  +s   ↾  ( ( ( ( (  L  ‘ 𝐴 )  ∪  (  R  ‘ 𝐴 ) )  ∪  { 𝐴 } )  ×  ( ( (  L  ‘ 𝐵 )  ∪  (  R  ‘ 𝐵 ) )  ∪  { 𝐵 } ) )  ∖  { 〈 𝐴 ,  𝐵 〉 } ) ) )  =  ( ( { 𝑦  ∣  ∃ 𝑙  ∈  (  L  ‘ ( 1st  ‘ 〈 𝐴 ,  𝐵 〉 ) ) 𝑦  =  ( 𝑙 (  +s   ↾  ( ( ( ( (  L  ‘ 𝐴 )  ∪  (  R  ‘ 𝐴 ) )  ∪  { 𝐴 } )  ×  ( ( (  L  ‘ 𝐵 )  ∪  (  R  ‘ 𝐵 ) )  ∪  { 𝐵 } ) )  ∖  { 〈 𝐴 ,  𝐵 〉 } ) ) ( 2nd  ‘ 〈 𝐴 ,  𝐵 〉 ) ) }  ∪  { 𝑧  ∣  ∃ 𝑙  ∈  (  L  ‘ ( 2nd  ‘ 〈 𝐴 ,  𝐵 〉 ) ) 𝑧  =  ( ( 1st  ‘ 〈 𝐴 ,  𝐵 〉 ) (  +s   ↾  ( ( ( ( (  L  ‘ 𝐴 )  ∪  (  R  ‘ 𝐴 ) )  ∪  { 𝐴 } )  ×  ( ( (  L  ‘ 𝐵 )  ∪  (  R  ‘ 𝐵 ) )  ∪  { 𝐵 } ) )  ∖  { 〈 𝐴 ,  𝐵 〉 } ) ) 𝑙 ) } )  |s  ( { 𝑦  ∣  ∃ 𝑟  ∈  (  R  ‘ ( 1st  ‘ 〈 𝐴 ,  𝐵 〉 ) ) 𝑦  =  ( 𝑟 (  +s   ↾  ( ( ( ( (  L  ‘ 𝐴 )  ∪  (  R  ‘ 𝐴 ) )  ∪  { 𝐴 } )  ×  ( ( (  L  ‘ 𝐵 )  ∪  (  R  ‘ 𝐵 ) )  ∪  { 𝐵 } ) )  ∖  { 〈 𝐴 ,  𝐵 〉 } ) ) ( 2nd  ‘ 〈 𝐴 ,  𝐵 〉 ) ) }  ∪  { 𝑧  ∣  ∃ 𝑟  ∈  (  R  ‘ ( 2nd  ‘ 〈 𝐴 ,  𝐵 〉 ) ) 𝑧  =  ( ( 1st  ‘ 〈 𝐴 ,  𝐵 〉 ) (  +s   ↾  ( ( ( ( (  L  ‘ 𝐴 )  ∪  (  R  ‘ 𝐴 ) )  ∪  { 𝐴 } )  ×  ( ( (  L  ‘ 𝐵 )  ∪  (  R  ‘ 𝐵 ) )  ∪  { 𝐵 } ) )  ∖  { 〈 𝐴 ,  𝐵 〉 } ) ) 𝑟 ) } ) ) ) | 
						
							| 68 | 3 20 67 | mp2an | ⊢ ( 〈 𝐴 ,  𝐵 〉 ( 𝑥  ∈  V ,  𝑎  ∈  V  ↦  ( ( { 𝑦  ∣  ∃ 𝑙  ∈  (  L  ‘ ( 1st  ‘ 𝑥 ) ) 𝑦  =  ( 𝑙 𝑎 ( 2nd  ‘ 𝑥 ) ) }  ∪  { 𝑧  ∣  ∃ 𝑙  ∈  (  L  ‘ ( 2nd  ‘ 𝑥 ) ) 𝑧  =  ( ( 1st  ‘ 𝑥 ) 𝑎 𝑙 ) } )  |s  ( { 𝑦  ∣  ∃ 𝑟  ∈  (  R  ‘ ( 1st  ‘ 𝑥 ) ) 𝑦  =  ( 𝑟 𝑎 ( 2nd  ‘ 𝑥 ) ) }  ∪  { 𝑧  ∣  ∃ 𝑟  ∈  (  R  ‘ ( 2nd  ‘ 𝑥 ) ) 𝑧  =  ( ( 1st  ‘ 𝑥 ) 𝑎 𝑟 ) } ) ) ) (  +s   ↾  ( ( ( ( (  L  ‘ 𝐴 )  ∪  (  R  ‘ 𝐴 ) )  ∪  { 𝐴 } )  ×  ( ( (  L  ‘ 𝐵 )  ∪  (  R  ‘ 𝐵 ) )  ∪  { 𝐵 } ) )  ∖  { 〈 𝐴 ,  𝐵 〉 } ) ) )  =  ( ( { 𝑦  ∣  ∃ 𝑙  ∈  (  L  ‘ ( 1st  ‘ 〈 𝐴 ,  𝐵 〉 ) ) 𝑦  =  ( 𝑙 (  +s   ↾  ( ( ( ( (  L  ‘ 𝐴 )  ∪  (  R  ‘ 𝐴 ) )  ∪  { 𝐴 } )  ×  ( ( (  L  ‘ 𝐵 )  ∪  (  R  ‘ 𝐵 ) )  ∪  { 𝐵 } ) )  ∖  { 〈 𝐴 ,  𝐵 〉 } ) ) ( 2nd  ‘ 〈 𝐴 ,  𝐵 〉 ) ) }  ∪  { 𝑧  ∣  ∃ 𝑙  ∈  (  L  ‘ ( 2nd  ‘ 〈 𝐴 ,  𝐵 〉 ) ) 𝑧  =  ( ( 1st  ‘ 〈 𝐴 ,  𝐵 〉 ) (  +s   ↾  ( ( ( ( (  L  ‘ 𝐴 )  ∪  (  R  ‘ 𝐴 ) )  ∪  { 𝐴 } )  ×  ( ( (  L  ‘ 𝐵 )  ∪  (  R  ‘ 𝐵 ) )  ∪  { 𝐵 } ) )  ∖  { 〈 𝐴 ,  𝐵 〉 } ) ) 𝑙 ) } )  |s  ( { 𝑦  ∣  ∃ 𝑟  ∈  (  R  ‘ ( 1st  ‘ 〈 𝐴 ,  𝐵 〉 ) ) 𝑦  =  ( 𝑟 (  +s   ↾  ( ( ( ( (  L  ‘ 𝐴 )  ∪  (  R  ‘ 𝐴 ) )  ∪  { 𝐴 } )  ×  ( ( (  L  ‘ 𝐵 )  ∪  (  R  ‘ 𝐵 ) )  ∪  { 𝐵 } ) )  ∖  { 〈 𝐴 ,  𝐵 〉 } ) ) ( 2nd  ‘ 〈 𝐴 ,  𝐵 〉 ) ) }  ∪  { 𝑧  ∣  ∃ 𝑟  ∈  (  R  ‘ ( 2nd  ‘ 〈 𝐴 ,  𝐵 〉 ) ) 𝑧  =  ( ( 1st  ‘ 〈 𝐴 ,  𝐵 〉 ) (  +s   ↾  ( ( ( ( (  L  ‘ 𝐴 )  ∪  (  R  ‘ 𝐴 ) )  ∪  { 𝐴 } )  ×  ( ( (  L  ‘ 𝐵 )  ∪  (  R  ‘ 𝐵 ) )  ∪  { 𝐵 } ) )  ∖  { 〈 𝐴 ,  𝐵 〉 } ) ) 𝑟 ) } ) ) | 
						
							| 69 |  | op1stg | ⊢ ( ( 𝐴  ∈   No   ∧  𝐵  ∈   No  )  →  ( 1st  ‘ 〈 𝐴 ,  𝐵 〉 )  =  𝐴 ) | 
						
							| 70 | 69 | fveq2d | ⊢ ( ( 𝐴  ∈   No   ∧  𝐵  ∈   No  )  →  (  L  ‘ ( 1st  ‘ 〈 𝐴 ,  𝐵 〉 ) )  =  (  L  ‘ 𝐴 ) ) | 
						
							| 71 | 70 | eleq2d | ⊢ ( ( 𝐴  ∈   No   ∧  𝐵  ∈   No  )  →  ( 𝑙  ∈  (  L  ‘ ( 1st  ‘ 〈 𝐴 ,  𝐵 〉 ) )  ↔  𝑙  ∈  (  L  ‘ 𝐴 ) ) ) | 
						
							| 72 |  | op2ndg | ⊢ ( ( 𝐴  ∈   No   ∧  𝐵  ∈   No  )  →  ( 2nd  ‘ 〈 𝐴 ,  𝐵 〉 )  =  𝐵 ) | 
						
							| 73 | 72 | adantr | ⊢ ( ( ( 𝐴  ∈   No   ∧  𝐵  ∈   No  )  ∧  𝑙  ∈  (  L  ‘ 𝐴 ) )  →  ( 2nd  ‘ 〈 𝐴 ,  𝐵 〉 )  =  𝐵 ) | 
						
							| 74 | 73 | oveq2d | ⊢ ( ( ( 𝐴  ∈   No   ∧  𝐵  ∈   No  )  ∧  𝑙  ∈  (  L  ‘ 𝐴 ) )  →  ( 𝑙 (  +s   ↾  ( ( ( ( (  L  ‘ 𝐴 )  ∪  (  R  ‘ 𝐴 ) )  ∪  { 𝐴 } )  ×  ( ( (  L  ‘ 𝐵 )  ∪  (  R  ‘ 𝐵 ) )  ∪  { 𝐵 } ) )  ∖  { 〈 𝐴 ,  𝐵 〉 } ) ) ( 2nd  ‘ 〈 𝐴 ,  𝐵 〉 ) )  =  ( 𝑙 (  +s   ↾  ( ( ( ( (  L  ‘ 𝐴 )  ∪  (  R  ‘ 𝐴 ) )  ∪  { 𝐴 } )  ×  ( ( (  L  ‘ 𝐵 )  ∪  (  R  ‘ 𝐵 ) )  ∪  { 𝐵 } ) )  ∖  { 〈 𝐴 ,  𝐵 〉 } ) ) 𝐵 ) ) | 
						
							| 75 |  | elun1 | ⊢ ( 𝑙  ∈  (  L  ‘ 𝐴 )  →  𝑙  ∈  ( (  L  ‘ 𝐴 )  ∪  (  R  ‘ 𝐴 ) ) ) | 
						
							| 76 |  | elun1 | ⊢ ( 𝑙  ∈  ( (  L  ‘ 𝐴 )  ∪  (  R  ‘ 𝐴 ) )  →  𝑙  ∈  ( ( (  L  ‘ 𝐴 )  ∪  (  R  ‘ 𝐴 ) )  ∪  { 𝐴 } ) ) | 
						
							| 77 | 75 76 | syl | ⊢ ( 𝑙  ∈  (  L  ‘ 𝐴 )  →  𝑙  ∈  ( ( (  L  ‘ 𝐴 )  ∪  (  R  ‘ 𝐴 ) )  ∪  { 𝐴 } ) ) | 
						
							| 78 | 77 | adantl | ⊢ ( ( ( 𝐴  ∈   No   ∧  𝐵  ∈   No  )  ∧  𝑙  ∈  (  L  ‘ 𝐴 ) )  →  𝑙  ∈  ( ( (  L  ‘ 𝐴 )  ∪  (  R  ‘ 𝐴 ) )  ∪  { 𝐴 } ) ) | 
						
							| 79 |  | snidg | ⊢ ( 𝐵  ∈   No   →  𝐵  ∈  { 𝐵 } ) | 
						
							| 80 |  | elun2 | ⊢ ( 𝐵  ∈  { 𝐵 }  →  𝐵  ∈  ( ( (  L  ‘ 𝐵 )  ∪  (  R  ‘ 𝐵 ) )  ∪  { 𝐵 } ) ) | 
						
							| 81 | 79 80 | syl | ⊢ ( 𝐵  ∈   No   →  𝐵  ∈  ( ( (  L  ‘ 𝐵 )  ∪  (  R  ‘ 𝐵 ) )  ∪  { 𝐵 } ) ) | 
						
							| 82 | 81 | adantl | ⊢ ( ( 𝐴  ∈   No   ∧  𝐵  ∈   No  )  →  𝐵  ∈  ( ( (  L  ‘ 𝐵 )  ∪  (  R  ‘ 𝐵 ) )  ∪  { 𝐵 } ) ) | 
						
							| 83 | 82 | adantr | ⊢ ( ( ( 𝐴  ∈   No   ∧  𝐵  ∈   No  )  ∧  𝑙  ∈  (  L  ‘ 𝐴 ) )  →  𝐵  ∈  ( ( (  L  ‘ 𝐵 )  ∪  (  R  ‘ 𝐵 ) )  ∪  { 𝐵 } ) ) | 
						
							| 84 | 78 83 | opelxpd | ⊢ ( ( ( 𝐴  ∈   No   ∧  𝐵  ∈   No  )  ∧  𝑙  ∈  (  L  ‘ 𝐴 ) )  →  〈 𝑙 ,  𝐵 〉  ∈  ( ( ( (  L  ‘ 𝐴 )  ∪  (  R  ‘ 𝐴 ) )  ∪  { 𝐴 } )  ×  ( ( (  L  ‘ 𝐵 )  ∪  (  R  ‘ 𝐵 ) )  ∪  { 𝐵 } ) ) ) | 
						
							| 85 |  | leftirr | ⊢ ¬  𝐴  ∈  (  L  ‘ 𝐴 ) | 
						
							| 86 | 85 | a1i | ⊢ ( ( 𝐴  ∈   No   ∧  𝐵  ∈   No  )  →  ¬  𝐴  ∈  (  L  ‘ 𝐴 ) ) | 
						
							| 87 |  | eleq1 | ⊢ ( 𝑙  =  𝐴  →  ( 𝑙  ∈  (  L  ‘ 𝐴 )  ↔  𝐴  ∈  (  L  ‘ 𝐴 ) ) ) | 
						
							| 88 | 87 | notbid | ⊢ ( 𝑙  =  𝐴  →  ( ¬  𝑙  ∈  (  L  ‘ 𝐴 )  ↔  ¬  𝐴  ∈  (  L  ‘ 𝐴 ) ) ) | 
						
							| 89 | 86 88 | syl5ibrcom | ⊢ ( ( 𝐴  ∈   No   ∧  𝐵  ∈   No  )  →  ( 𝑙  =  𝐴  →  ¬  𝑙  ∈  (  L  ‘ 𝐴 ) ) ) | 
						
							| 90 | 89 | necon2ad | ⊢ ( ( 𝐴  ∈   No   ∧  𝐵  ∈   No  )  →  ( 𝑙  ∈  (  L  ‘ 𝐴 )  →  𝑙  ≠  𝐴 ) ) | 
						
							| 91 | 90 | imp | ⊢ ( ( ( 𝐴  ∈   No   ∧  𝐵  ∈   No  )  ∧  𝑙  ∈  (  L  ‘ 𝐴 ) )  →  𝑙  ≠  𝐴 ) | 
						
							| 92 | 91 | orcd | ⊢ ( ( ( 𝐴  ∈   No   ∧  𝐵  ∈   No  )  ∧  𝑙  ∈  (  L  ‘ 𝐴 ) )  →  ( 𝑙  ≠  𝐴  ∨  𝐵  ≠  𝐵 ) ) | 
						
							| 93 |  | simpr | ⊢ ( ( ( 𝐴  ∈   No   ∧  𝐵  ∈   No  )  ∧  𝑙  ∈  (  L  ‘ 𝐴 ) )  →  𝑙  ∈  (  L  ‘ 𝐴 ) ) | 
						
							| 94 |  | simplr | ⊢ ( ( ( 𝐴  ∈   No   ∧  𝐵  ∈   No  )  ∧  𝑙  ∈  (  L  ‘ 𝐴 ) )  →  𝐵  ∈   No  ) | 
						
							| 95 |  | opthneg | ⊢ ( ( 𝑙  ∈  (  L  ‘ 𝐴 )  ∧  𝐵  ∈   No  )  →  ( 〈 𝑙 ,  𝐵 〉  ≠  〈 𝐴 ,  𝐵 〉  ↔  ( 𝑙  ≠  𝐴  ∨  𝐵  ≠  𝐵 ) ) ) | 
						
							| 96 | 93 94 95 | syl2anc | ⊢ ( ( ( 𝐴  ∈   No   ∧  𝐵  ∈   No  )  ∧  𝑙  ∈  (  L  ‘ 𝐴 ) )  →  ( 〈 𝑙 ,  𝐵 〉  ≠  〈 𝐴 ,  𝐵 〉  ↔  ( 𝑙  ≠  𝐴  ∨  𝐵  ≠  𝐵 ) ) ) | 
						
							| 97 | 92 96 | mpbird | ⊢ ( ( ( 𝐴  ∈   No   ∧  𝐵  ∈   No  )  ∧  𝑙  ∈  (  L  ‘ 𝐴 ) )  →  〈 𝑙 ,  𝐵 〉  ≠  〈 𝐴 ,  𝐵 〉 ) | 
						
							| 98 |  | eldifsn | ⊢ ( 〈 𝑙 ,  𝐵 〉  ∈  ( ( ( ( (  L  ‘ 𝐴 )  ∪  (  R  ‘ 𝐴 ) )  ∪  { 𝐴 } )  ×  ( ( (  L  ‘ 𝐵 )  ∪  (  R  ‘ 𝐵 ) )  ∪  { 𝐵 } ) )  ∖  { 〈 𝐴 ,  𝐵 〉 } )  ↔  ( 〈 𝑙 ,  𝐵 〉  ∈  ( ( ( (  L  ‘ 𝐴 )  ∪  (  R  ‘ 𝐴 ) )  ∪  { 𝐴 } )  ×  ( ( (  L  ‘ 𝐵 )  ∪  (  R  ‘ 𝐵 ) )  ∪  { 𝐵 } ) )  ∧  〈 𝑙 ,  𝐵 〉  ≠  〈 𝐴 ,  𝐵 〉 ) ) | 
						
							| 99 | 84 97 98 | sylanbrc | ⊢ ( ( ( 𝐴  ∈   No   ∧  𝐵  ∈   No  )  ∧  𝑙  ∈  (  L  ‘ 𝐴 ) )  →  〈 𝑙 ,  𝐵 〉  ∈  ( ( ( ( (  L  ‘ 𝐴 )  ∪  (  R  ‘ 𝐴 ) )  ∪  { 𝐴 } )  ×  ( ( (  L  ‘ 𝐵 )  ∪  (  R  ‘ 𝐵 ) )  ∪  { 𝐵 } ) )  ∖  { 〈 𝐴 ,  𝐵 〉 } ) ) | 
						
							| 100 | 99 | fvresd | ⊢ ( ( ( 𝐴  ∈   No   ∧  𝐵  ∈   No  )  ∧  𝑙  ∈  (  L  ‘ 𝐴 ) )  →  ( (  +s   ↾  ( ( ( ( (  L  ‘ 𝐴 )  ∪  (  R  ‘ 𝐴 ) )  ∪  { 𝐴 } )  ×  ( ( (  L  ‘ 𝐵 )  ∪  (  R  ‘ 𝐵 ) )  ∪  { 𝐵 } ) )  ∖  { 〈 𝐴 ,  𝐵 〉 } ) ) ‘ 〈 𝑙 ,  𝐵 〉 )  =  (  +s  ‘ 〈 𝑙 ,  𝐵 〉 ) ) | 
						
							| 101 |  | df-ov | ⊢ ( 𝑙 (  +s   ↾  ( ( ( ( (  L  ‘ 𝐴 )  ∪  (  R  ‘ 𝐴 ) )  ∪  { 𝐴 } )  ×  ( ( (  L  ‘ 𝐵 )  ∪  (  R  ‘ 𝐵 ) )  ∪  { 𝐵 } ) )  ∖  { 〈 𝐴 ,  𝐵 〉 } ) ) 𝐵 )  =  ( (  +s   ↾  ( ( ( ( (  L  ‘ 𝐴 )  ∪  (  R  ‘ 𝐴 ) )  ∪  { 𝐴 } )  ×  ( ( (  L  ‘ 𝐵 )  ∪  (  R  ‘ 𝐵 ) )  ∪  { 𝐵 } ) )  ∖  { 〈 𝐴 ,  𝐵 〉 } ) ) ‘ 〈 𝑙 ,  𝐵 〉 ) | 
						
							| 102 |  | df-ov | ⊢ ( 𝑙  +s  𝐵 )  =  (  +s  ‘ 〈 𝑙 ,  𝐵 〉 ) | 
						
							| 103 | 100 101 102 | 3eqtr4g | ⊢ ( ( ( 𝐴  ∈   No   ∧  𝐵  ∈   No  )  ∧  𝑙  ∈  (  L  ‘ 𝐴 ) )  →  ( 𝑙 (  +s   ↾  ( ( ( ( (  L  ‘ 𝐴 )  ∪  (  R  ‘ 𝐴 ) )  ∪  { 𝐴 } )  ×  ( ( (  L  ‘ 𝐵 )  ∪  (  R  ‘ 𝐵 ) )  ∪  { 𝐵 } ) )  ∖  { 〈 𝐴 ,  𝐵 〉 } ) ) 𝐵 )  =  ( 𝑙  +s  𝐵 ) ) | 
						
							| 104 | 74 103 | eqtrd | ⊢ ( ( ( 𝐴  ∈   No   ∧  𝐵  ∈   No  )  ∧  𝑙  ∈  (  L  ‘ 𝐴 ) )  →  ( 𝑙 (  +s   ↾  ( ( ( ( (  L  ‘ 𝐴 )  ∪  (  R  ‘ 𝐴 ) )  ∪  { 𝐴 } )  ×  ( ( (  L  ‘ 𝐵 )  ∪  (  R  ‘ 𝐵 ) )  ∪  { 𝐵 } ) )  ∖  { 〈 𝐴 ,  𝐵 〉 } ) ) ( 2nd  ‘ 〈 𝐴 ,  𝐵 〉 ) )  =  ( 𝑙  +s  𝐵 ) ) | 
						
							| 105 | 104 | eqeq2d | ⊢ ( ( ( 𝐴  ∈   No   ∧  𝐵  ∈   No  )  ∧  𝑙  ∈  (  L  ‘ 𝐴 ) )  →  ( 𝑦  =  ( 𝑙 (  +s   ↾  ( ( ( ( (  L  ‘ 𝐴 )  ∪  (  R  ‘ 𝐴 ) )  ∪  { 𝐴 } )  ×  ( ( (  L  ‘ 𝐵 )  ∪  (  R  ‘ 𝐵 ) )  ∪  { 𝐵 } ) )  ∖  { 〈 𝐴 ,  𝐵 〉 } ) ) ( 2nd  ‘ 〈 𝐴 ,  𝐵 〉 ) )  ↔  𝑦  =  ( 𝑙  +s  𝐵 ) ) ) | 
						
							| 106 | 71 105 | sylbida | ⊢ ( ( ( 𝐴  ∈   No   ∧  𝐵  ∈   No  )  ∧  𝑙  ∈  (  L  ‘ ( 1st  ‘ 〈 𝐴 ,  𝐵 〉 ) ) )  →  ( 𝑦  =  ( 𝑙 (  +s   ↾  ( ( ( ( (  L  ‘ 𝐴 )  ∪  (  R  ‘ 𝐴 ) )  ∪  { 𝐴 } )  ×  ( ( (  L  ‘ 𝐵 )  ∪  (  R  ‘ 𝐵 ) )  ∪  { 𝐵 } ) )  ∖  { 〈 𝐴 ,  𝐵 〉 } ) ) ( 2nd  ‘ 〈 𝐴 ,  𝐵 〉 ) )  ↔  𝑦  =  ( 𝑙  +s  𝐵 ) ) ) | 
						
							| 107 | 70 106 | rexeqbidva | ⊢ ( ( 𝐴  ∈   No   ∧  𝐵  ∈   No  )  →  ( ∃ 𝑙  ∈  (  L  ‘ ( 1st  ‘ 〈 𝐴 ,  𝐵 〉 ) ) 𝑦  =  ( 𝑙 (  +s   ↾  ( ( ( ( (  L  ‘ 𝐴 )  ∪  (  R  ‘ 𝐴 ) )  ∪  { 𝐴 } )  ×  ( ( (  L  ‘ 𝐵 )  ∪  (  R  ‘ 𝐵 ) )  ∪  { 𝐵 } ) )  ∖  { 〈 𝐴 ,  𝐵 〉 } ) ) ( 2nd  ‘ 〈 𝐴 ,  𝐵 〉 ) )  ↔  ∃ 𝑙  ∈  (  L  ‘ 𝐴 ) 𝑦  =  ( 𝑙  +s  𝐵 ) ) ) | 
						
							| 108 | 107 | abbidv | ⊢ ( ( 𝐴  ∈   No   ∧  𝐵  ∈   No  )  →  { 𝑦  ∣  ∃ 𝑙  ∈  (  L  ‘ ( 1st  ‘ 〈 𝐴 ,  𝐵 〉 ) ) 𝑦  =  ( 𝑙 (  +s   ↾  ( ( ( ( (  L  ‘ 𝐴 )  ∪  (  R  ‘ 𝐴 ) )  ∪  { 𝐴 } )  ×  ( ( (  L  ‘ 𝐵 )  ∪  (  R  ‘ 𝐵 ) )  ∪  { 𝐵 } ) )  ∖  { 〈 𝐴 ,  𝐵 〉 } ) ) ( 2nd  ‘ 〈 𝐴 ,  𝐵 〉 ) ) }  =  { 𝑦  ∣  ∃ 𝑙  ∈  (  L  ‘ 𝐴 ) 𝑦  =  ( 𝑙  +s  𝐵 ) } ) | 
						
							| 109 | 72 | fveq2d | ⊢ ( ( 𝐴  ∈   No   ∧  𝐵  ∈   No  )  →  (  L  ‘ ( 2nd  ‘ 〈 𝐴 ,  𝐵 〉 ) )  =  (  L  ‘ 𝐵 ) ) | 
						
							| 110 | 109 | eleq2d | ⊢ ( ( 𝐴  ∈   No   ∧  𝐵  ∈   No  )  →  ( 𝑙  ∈  (  L  ‘ ( 2nd  ‘ 〈 𝐴 ,  𝐵 〉 ) )  ↔  𝑙  ∈  (  L  ‘ 𝐵 ) ) ) | 
						
							| 111 | 69 | adantr | ⊢ ( ( ( 𝐴  ∈   No   ∧  𝐵  ∈   No  )  ∧  𝑙  ∈  (  L  ‘ 𝐵 ) )  →  ( 1st  ‘ 〈 𝐴 ,  𝐵 〉 )  =  𝐴 ) | 
						
							| 112 | 111 | oveq1d | ⊢ ( ( ( 𝐴  ∈   No   ∧  𝐵  ∈   No  )  ∧  𝑙  ∈  (  L  ‘ 𝐵 ) )  →  ( ( 1st  ‘ 〈 𝐴 ,  𝐵 〉 ) (  +s   ↾  ( ( ( ( (  L  ‘ 𝐴 )  ∪  (  R  ‘ 𝐴 ) )  ∪  { 𝐴 } )  ×  ( ( (  L  ‘ 𝐵 )  ∪  (  R  ‘ 𝐵 ) )  ∪  { 𝐵 } ) )  ∖  { 〈 𝐴 ,  𝐵 〉 } ) ) 𝑙 )  =  ( 𝐴 (  +s   ↾  ( ( ( ( (  L  ‘ 𝐴 )  ∪  (  R  ‘ 𝐴 ) )  ∪  { 𝐴 } )  ×  ( ( (  L  ‘ 𝐵 )  ∪  (  R  ‘ 𝐵 ) )  ∪  { 𝐵 } ) )  ∖  { 〈 𝐴 ,  𝐵 〉 } ) ) 𝑙 ) ) | 
						
							| 113 |  | snidg | ⊢ ( 𝐴  ∈   No   →  𝐴  ∈  { 𝐴 } ) | 
						
							| 114 | 113 | adantr | ⊢ ( ( 𝐴  ∈   No   ∧  𝐵  ∈   No  )  →  𝐴  ∈  { 𝐴 } ) | 
						
							| 115 |  | elun2 | ⊢ ( 𝐴  ∈  { 𝐴 }  →  𝐴  ∈  ( ( (  L  ‘ 𝐴 )  ∪  (  R  ‘ 𝐴 ) )  ∪  { 𝐴 } ) ) | 
						
							| 116 | 114 115 | syl | ⊢ ( ( 𝐴  ∈   No   ∧  𝐵  ∈   No  )  →  𝐴  ∈  ( ( (  L  ‘ 𝐴 )  ∪  (  R  ‘ 𝐴 ) )  ∪  { 𝐴 } ) ) | 
						
							| 117 | 116 | adantr | ⊢ ( ( ( 𝐴  ∈   No   ∧  𝐵  ∈   No  )  ∧  𝑙  ∈  (  L  ‘ 𝐵 ) )  →  𝐴  ∈  ( ( (  L  ‘ 𝐴 )  ∪  (  R  ‘ 𝐴 ) )  ∪  { 𝐴 } ) ) | 
						
							| 118 |  | elun1 | ⊢ ( 𝑙  ∈  (  L  ‘ 𝐵 )  →  𝑙  ∈  ( (  L  ‘ 𝐵 )  ∪  (  R  ‘ 𝐵 ) ) ) | 
						
							| 119 |  | elun1 | ⊢ ( 𝑙  ∈  ( (  L  ‘ 𝐵 )  ∪  (  R  ‘ 𝐵 ) )  →  𝑙  ∈  ( ( (  L  ‘ 𝐵 )  ∪  (  R  ‘ 𝐵 ) )  ∪  { 𝐵 } ) ) | 
						
							| 120 | 118 119 | syl | ⊢ ( 𝑙  ∈  (  L  ‘ 𝐵 )  →  𝑙  ∈  ( ( (  L  ‘ 𝐵 )  ∪  (  R  ‘ 𝐵 ) )  ∪  { 𝐵 } ) ) | 
						
							| 121 | 120 | adantl | ⊢ ( ( ( 𝐴  ∈   No   ∧  𝐵  ∈   No  )  ∧  𝑙  ∈  (  L  ‘ 𝐵 ) )  →  𝑙  ∈  ( ( (  L  ‘ 𝐵 )  ∪  (  R  ‘ 𝐵 ) )  ∪  { 𝐵 } ) ) | 
						
							| 122 | 117 121 | opelxpd | ⊢ ( ( ( 𝐴  ∈   No   ∧  𝐵  ∈   No  )  ∧  𝑙  ∈  (  L  ‘ 𝐵 ) )  →  〈 𝐴 ,  𝑙 〉  ∈  ( ( ( (  L  ‘ 𝐴 )  ∪  (  R  ‘ 𝐴 ) )  ∪  { 𝐴 } )  ×  ( ( (  L  ‘ 𝐵 )  ∪  (  R  ‘ 𝐵 ) )  ∪  { 𝐵 } ) ) ) | 
						
							| 123 |  | leftirr | ⊢ ¬  𝐵  ∈  (  L  ‘ 𝐵 ) | 
						
							| 124 | 123 | a1i | ⊢ ( ( 𝐴  ∈   No   ∧  𝐵  ∈   No  )  →  ¬  𝐵  ∈  (  L  ‘ 𝐵 ) ) | 
						
							| 125 |  | eleq1 | ⊢ ( 𝑙  =  𝐵  →  ( 𝑙  ∈  (  L  ‘ 𝐵 )  ↔  𝐵  ∈  (  L  ‘ 𝐵 ) ) ) | 
						
							| 126 | 125 | notbid | ⊢ ( 𝑙  =  𝐵  →  ( ¬  𝑙  ∈  (  L  ‘ 𝐵 )  ↔  ¬  𝐵  ∈  (  L  ‘ 𝐵 ) ) ) | 
						
							| 127 | 124 126 | syl5ibrcom | ⊢ ( ( 𝐴  ∈   No   ∧  𝐵  ∈   No  )  →  ( 𝑙  =  𝐵  →  ¬  𝑙  ∈  (  L  ‘ 𝐵 ) ) ) | 
						
							| 128 | 127 | necon2ad | ⊢ ( ( 𝐴  ∈   No   ∧  𝐵  ∈   No  )  →  ( 𝑙  ∈  (  L  ‘ 𝐵 )  →  𝑙  ≠  𝐵 ) ) | 
						
							| 129 | 128 | imp | ⊢ ( ( ( 𝐴  ∈   No   ∧  𝐵  ∈   No  )  ∧  𝑙  ∈  (  L  ‘ 𝐵 ) )  →  𝑙  ≠  𝐵 ) | 
						
							| 130 | 129 | olcd | ⊢ ( ( ( 𝐴  ∈   No   ∧  𝐵  ∈   No  )  ∧  𝑙  ∈  (  L  ‘ 𝐵 ) )  →  ( 𝐴  ≠  𝐴  ∨  𝑙  ≠  𝐵 ) ) | 
						
							| 131 |  | opthneg | ⊢ ( ( 𝐴  ∈   No   ∧  𝑙  ∈  (  L  ‘ 𝐵 ) )  →  ( 〈 𝐴 ,  𝑙 〉  ≠  〈 𝐴 ,  𝐵 〉  ↔  ( 𝐴  ≠  𝐴  ∨  𝑙  ≠  𝐵 ) ) ) | 
						
							| 132 | 131 | adantlr | ⊢ ( ( ( 𝐴  ∈   No   ∧  𝐵  ∈   No  )  ∧  𝑙  ∈  (  L  ‘ 𝐵 ) )  →  ( 〈 𝐴 ,  𝑙 〉  ≠  〈 𝐴 ,  𝐵 〉  ↔  ( 𝐴  ≠  𝐴  ∨  𝑙  ≠  𝐵 ) ) ) | 
						
							| 133 | 130 132 | mpbird | ⊢ ( ( ( 𝐴  ∈   No   ∧  𝐵  ∈   No  )  ∧  𝑙  ∈  (  L  ‘ 𝐵 ) )  →  〈 𝐴 ,  𝑙 〉  ≠  〈 𝐴 ,  𝐵 〉 ) | 
						
							| 134 |  | eldifsn | ⊢ ( 〈 𝐴 ,  𝑙 〉  ∈  ( ( ( ( (  L  ‘ 𝐴 )  ∪  (  R  ‘ 𝐴 ) )  ∪  { 𝐴 } )  ×  ( ( (  L  ‘ 𝐵 )  ∪  (  R  ‘ 𝐵 ) )  ∪  { 𝐵 } ) )  ∖  { 〈 𝐴 ,  𝐵 〉 } )  ↔  ( 〈 𝐴 ,  𝑙 〉  ∈  ( ( ( (  L  ‘ 𝐴 )  ∪  (  R  ‘ 𝐴 ) )  ∪  { 𝐴 } )  ×  ( ( (  L  ‘ 𝐵 )  ∪  (  R  ‘ 𝐵 ) )  ∪  { 𝐵 } ) )  ∧  〈 𝐴 ,  𝑙 〉  ≠  〈 𝐴 ,  𝐵 〉 ) ) | 
						
							| 135 | 122 133 134 | sylanbrc | ⊢ ( ( ( 𝐴  ∈   No   ∧  𝐵  ∈   No  )  ∧  𝑙  ∈  (  L  ‘ 𝐵 ) )  →  〈 𝐴 ,  𝑙 〉  ∈  ( ( ( ( (  L  ‘ 𝐴 )  ∪  (  R  ‘ 𝐴 ) )  ∪  { 𝐴 } )  ×  ( ( (  L  ‘ 𝐵 )  ∪  (  R  ‘ 𝐵 ) )  ∪  { 𝐵 } ) )  ∖  { 〈 𝐴 ,  𝐵 〉 } ) ) | 
						
							| 136 | 135 | fvresd | ⊢ ( ( ( 𝐴  ∈   No   ∧  𝐵  ∈   No  )  ∧  𝑙  ∈  (  L  ‘ 𝐵 ) )  →  ( (  +s   ↾  ( ( ( ( (  L  ‘ 𝐴 )  ∪  (  R  ‘ 𝐴 ) )  ∪  { 𝐴 } )  ×  ( ( (  L  ‘ 𝐵 )  ∪  (  R  ‘ 𝐵 ) )  ∪  { 𝐵 } ) )  ∖  { 〈 𝐴 ,  𝐵 〉 } ) ) ‘ 〈 𝐴 ,  𝑙 〉 )  =  (  +s  ‘ 〈 𝐴 ,  𝑙 〉 ) ) | 
						
							| 137 |  | df-ov | ⊢ ( 𝐴 (  +s   ↾  ( ( ( ( (  L  ‘ 𝐴 )  ∪  (  R  ‘ 𝐴 ) )  ∪  { 𝐴 } )  ×  ( ( (  L  ‘ 𝐵 )  ∪  (  R  ‘ 𝐵 ) )  ∪  { 𝐵 } ) )  ∖  { 〈 𝐴 ,  𝐵 〉 } ) ) 𝑙 )  =  ( (  +s   ↾  ( ( ( ( (  L  ‘ 𝐴 )  ∪  (  R  ‘ 𝐴 ) )  ∪  { 𝐴 } )  ×  ( ( (  L  ‘ 𝐵 )  ∪  (  R  ‘ 𝐵 ) )  ∪  { 𝐵 } ) )  ∖  { 〈 𝐴 ,  𝐵 〉 } ) ) ‘ 〈 𝐴 ,  𝑙 〉 ) | 
						
							| 138 |  | df-ov | ⊢ ( 𝐴  +s  𝑙 )  =  (  +s  ‘ 〈 𝐴 ,  𝑙 〉 ) | 
						
							| 139 | 136 137 138 | 3eqtr4g | ⊢ ( ( ( 𝐴  ∈   No   ∧  𝐵  ∈   No  )  ∧  𝑙  ∈  (  L  ‘ 𝐵 ) )  →  ( 𝐴 (  +s   ↾  ( ( ( ( (  L  ‘ 𝐴 )  ∪  (  R  ‘ 𝐴 ) )  ∪  { 𝐴 } )  ×  ( ( (  L  ‘ 𝐵 )  ∪  (  R  ‘ 𝐵 ) )  ∪  { 𝐵 } ) )  ∖  { 〈 𝐴 ,  𝐵 〉 } ) ) 𝑙 )  =  ( 𝐴  +s  𝑙 ) ) | 
						
							| 140 | 112 139 | eqtrd | ⊢ ( ( ( 𝐴  ∈   No   ∧  𝐵  ∈   No  )  ∧  𝑙  ∈  (  L  ‘ 𝐵 ) )  →  ( ( 1st  ‘ 〈 𝐴 ,  𝐵 〉 ) (  +s   ↾  ( ( ( ( (  L  ‘ 𝐴 )  ∪  (  R  ‘ 𝐴 ) )  ∪  { 𝐴 } )  ×  ( ( (  L  ‘ 𝐵 )  ∪  (  R  ‘ 𝐵 ) )  ∪  { 𝐵 } ) )  ∖  { 〈 𝐴 ,  𝐵 〉 } ) ) 𝑙 )  =  ( 𝐴  +s  𝑙 ) ) | 
						
							| 141 | 140 | eqeq2d | ⊢ ( ( ( 𝐴  ∈   No   ∧  𝐵  ∈   No  )  ∧  𝑙  ∈  (  L  ‘ 𝐵 ) )  →  ( 𝑧  =  ( ( 1st  ‘ 〈 𝐴 ,  𝐵 〉 ) (  +s   ↾  ( ( ( ( (  L  ‘ 𝐴 )  ∪  (  R  ‘ 𝐴 ) )  ∪  { 𝐴 } )  ×  ( ( (  L  ‘ 𝐵 )  ∪  (  R  ‘ 𝐵 ) )  ∪  { 𝐵 } ) )  ∖  { 〈 𝐴 ,  𝐵 〉 } ) ) 𝑙 )  ↔  𝑧  =  ( 𝐴  +s  𝑙 ) ) ) | 
						
							| 142 | 110 141 | sylbida | ⊢ ( ( ( 𝐴  ∈   No   ∧  𝐵  ∈   No  )  ∧  𝑙  ∈  (  L  ‘ ( 2nd  ‘ 〈 𝐴 ,  𝐵 〉 ) ) )  →  ( 𝑧  =  ( ( 1st  ‘ 〈 𝐴 ,  𝐵 〉 ) (  +s   ↾  ( ( ( ( (  L  ‘ 𝐴 )  ∪  (  R  ‘ 𝐴 ) )  ∪  { 𝐴 } )  ×  ( ( (  L  ‘ 𝐵 )  ∪  (  R  ‘ 𝐵 ) )  ∪  { 𝐵 } ) )  ∖  { 〈 𝐴 ,  𝐵 〉 } ) ) 𝑙 )  ↔  𝑧  =  ( 𝐴  +s  𝑙 ) ) ) | 
						
							| 143 | 109 142 | rexeqbidva | ⊢ ( ( 𝐴  ∈   No   ∧  𝐵  ∈   No  )  →  ( ∃ 𝑙  ∈  (  L  ‘ ( 2nd  ‘ 〈 𝐴 ,  𝐵 〉 ) ) 𝑧  =  ( ( 1st  ‘ 〈 𝐴 ,  𝐵 〉 ) (  +s   ↾  ( ( ( ( (  L  ‘ 𝐴 )  ∪  (  R  ‘ 𝐴 ) )  ∪  { 𝐴 } )  ×  ( ( (  L  ‘ 𝐵 )  ∪  (  R  ‘ 𝐵 ) )  ∪  { 𝐵 } ) )  ∖  { 〈 𝐴 ,  𝐵 〉 } ) ) 𝑙 )  ↔  ∃ 𝑙  ∈  (  L  ‘ 𝐵 ) 𝑧  =  ( 𝐴  +s  𝑙 ) ) ) | 
						
							| 144 | 143 | abbidv | ⊢ ( ( 𝐴  ∈   No   ∧  𝐵  ∈   No  )  →  { 𝑧  ∣  ∃ 𝑙  ∈  (  L  ‘ ( 2nd  ‘ 〈 𝐴 ,  𝐵 〉 ) ) 𝑧  =  ( ( 1st  ‘ 〈 𝐴 ,  𝐵 〉 ) (  +s   ↾  ( ( ( ( (  L  ‘ 𝐴 )  ∪  (  R  ‘ 𝐴 ) )  ∪  { 𝐴 } )  ×  ( ( (  L  ‘ 𝐵 )  ∪  (  R  ‘ 𝐵 ) )  ∪  { 𝐵 } ) )  ∖  { 〈 𝐴 ,  𝐵 〉 } ) ) 𝑙 ) }  =  { 𝑧  ∣  ∃ 𝑙  ∈  (  L  ‘ 𝐵 ) 𝑧  =  ( 𝐴  +s  𝑙 ) } ) | 
						
							| 145 | 108 144 | uneq12d | ⊢ ( ( 𝐴  ∈   No   ∧  𝐵  ∈   No  )  →  ( { 𝑦  ∣  ∃ 𝑙  ∈  (  L  ‘ ( 1st  ‘ 〈 𝐴 ,  𝐵 〉 ) ) 𝑦  =  ( 𝑙 (  +s   ↾  ( ( ( ( (  L  ‘ 𝐴 )  ∪  (  R  ‘ 𝐴 ) )  ∪  { 𝐴 } )  ×  ( ( (  L  ‘ 𝐵 )  ∪  (  R  ‘ 𝐵 ) )  ∪  { 𝐵 } ) )  ∖  { 〈 𝐴 ,  𝐵 〉 } ) ) ( 2nd  ‘ 〈 𝐴 ,  𝐵 〉 ) ) }  ∪  { 𝑧  ∣  ∃ 𝑙  ∈  (  L  ‘ ( 2nd  ‘ 〈 𝐴 ,  𝐵 〉 ) ) 𝑧  =  ( ( 1st  ‘ 〈 𝐴 ,  𝐵 〉 ) (  +s   ↾  ( ( ( ( (  L  ‘ 𝐴 )  ∪  (  R  ‘ 𝐴 ) )  ∪  { 𝐴 } )  ×  ( ( (  L  ‘ 𝐵 )  ∪  (  R  ‘ 𝐵 ) )  ∪  { 𝐵 } ) )  ∖  { 〈 𝐴 ,  𝐵 〉 } ) ) 𝑙 ) } )  =  ( { 𝑦  ∣  ∃ 𝑙  ∈  (  L  ‘ 𝐴 ) 𝑦  =  ( 𝑙  +s  𝐵 ) }  ∪  { 𝑧  ∣  ∃ 𝑙  ∈  (  L  ‘ 𝐵 ) 𝑧  =  ( 𝐴  +s  𝑙 ) } ) ) | 
						
							| 146 | 69 | fveq2d | ⊢ ( ( 𝐴  ∈   No   ∧  𝐵  ∈   No  )  →  (  R  ‘ ( 1st  ‘ 〈 𝐴 ,  𝐵 〉 ) )  =  (  R  ‘ 𝐴 ) ) | 
						
							| 147 | 146 | eleq2d | ⊢ ( ( 𝐴  ∈   No   ∧  𝐵  ∈   No  )  →  ( 𝑟  ∈  (  R  ‘ ( 1st  ‘ 〈 𝐴 ,  𝐵 〉 ) )  ↔  𝑟  ∈  (  R  ‘ 𝐴 ) ) ) | 
						
							| 148 | 72 | adantr | ⊢ ( ( ( 𝐴  ∈   No   ∧  𝐵  ∈   No  )  ∧  𝑟  ∈  (  R  ‘ 𝐴 ) )  →  ( 2nd  ‘ 〈 𝐴 ,  𝐵 〉 )  =  𝐵 ) | 
						
							| 149 | 148 | oveq2d | ⊢ ( ( ( 𝐴  ∈   No   ∧  𝐵  ∈   No  )  ∧  𝑟  ∈  (  R  ‘ 𝐴 ) )  →  ( 𝑟 (  +s   ↾  ( ( ( ( (  L  ‘ 𝐴 )  ∪  (  R  ‘ 𝐴 ) )  ∪  { 𝐴 } )  ×  ( ( (  L  ‘ 𝐵 )  ∪  (  R  ‘ 𝐵 ) )  ∪  { 𝐵 } ) )  ∖  { 〈 𝐴 ,  𝐵 〉 } ) ) ( 2nd  ‘ 〈 𝐴 ,  𝐵 〉 ) )  =  ( 𝑟 (  +s   ↾  ( ( ( ( (  L  ‘ 𝐴 )  ∪  (  R  ‘ 𝐴 ) )  ∪  { 𝐴 } )  ×  ( ( (  L  ‘ 𝐵 )  ∪  (  R  ‘ 𝐵 ) )  ∪  { 𝐵 } ) )  ∖  { 〈 𝐴 ,  𝐵 〉 } ) ) 𝐵 ) ) | 
						
							| 150 |  | elun2 | ⊢ ( 𝑟  ∈  (  R  ‘ 𝐴 )  →  𝑟  ∈  ( (  L  ‘ 𝐴 )  ∪  (  R  ‘ 𝐴 ) ) ) | 
						
							| 151 |  | elun1 | ⊢ ( 𝑟  ∈  ( (  L  ‘ 𝐴 )  ∪  (  R  ‘ 𝐴 ) )  →  𝑟  ∈  ( ( (  L  ‘ 𝐴 )  ∪  (  R  ‘ 𝐴 ) )  ∪  { 𝐴 } ) ) | 
						
							| 152 | 150 151 | syl | ⊢ ( 𝑟  ∈  (  R  ‘ 𝐴 )  →  𝑟  ∈  ( ( (  L  ‘ 𝐴 )  ∪  (  R  ‘ 𝐴 ) )  ∪  { 𝐴 } ) ) | 
						
							| 153 | 152 | adantl | ⊢ ( ( ( 𝐴  ∈   No   ∧  𝐵  ∈   No  )  ∧  𝑟  ∈  (  R  ‘ 𝐴 ) )  →  𝑟  ∈  ( ( (  L  ‘ 𝐴 )  ∪  (  R  ‘ 𝐴 ) )  ∪  { 𝐴 } ) ) | 
						
							| 154 | 82 | adantr | ⊢ ( ( ( 𝐴  ∈   No   ∧  𝐵  ∈   No  )  ∧  𝑟  ∈  (  R  ‘ 𝐴 ) )  →  𝐵  ∈  ( ( (  L  ‘ 𝐵 )  ∪  (  R  ‘ 𝐵 ) )  ∪  { 𝐵 } ) ) | 
						
							| 155 | 153 154 | opelxpd | ⊢ ( ( ( 𝐴  ∈   No   ∧  𝐵  ∈   No  )  ∧  𝑟  ∈  (  R  ‘ 𝐴 ) )  →  〈 𝑟 ,  𝐵 〉  ∈  ( ( ( (  L  ‘ 𝐴 )  ∪  (  R  ‘ 𝐴 ) )  ∪  { 𝐴 } )  ×  ( ( (  L  ‘ 𝐵 )  ∪  (  R  ‘ 𝐵 ) )  ∪  { 𝐵 } ) ) ) | 
						
							| 156 |  | rightirr | ⊢ ¬  𝐴  ∈  (  R  ‘ 𝐴 ) | 
						
							| 157 | 156 | a1i | ⊢ ( ( 𝐴  ∈   No   ∧  𝐵  ∈   No  )  →  ¬  𝐴  ∈  (  R  ‘ 𝐴 ) ) | 
						
							| 158 |  | eleq1 | ⊢ ( 𝑟  =  𝐴  →  ( 𝑟  ∈  (  R  ‘ 𝐴 )  ↔  𝐴  ∈  (  R  ‘ 𝐴 ) ) ) | 
						
							| 159 | 158 | notbid | ⊢ ( 𝑟  =  𝐴  →  ( ¬  𝑟  ∈  (  R  ‘ 𝐴 )  ↔  ¬  𝐴  ∈  (  R  ‘ 𝐴 ) ) ) | 
						
							| 160 | 157 159 | syl5ibrcom | ⊢ ( ( 𝐴  ∈   No   ∧  𝐵  ∈   No  )  →  ( 𝑟  =  𝐴  →  ¬  𝑟  ∈  (  R  ‘ 𝐴 ) ) ) | 
						
							| 161 | 160 | necon2ad | ⊢ ( ( 𝐴  ∈   No   ∧  𝐵  ∈   No  )  →  ( 𝑟  ∈  (  R  ‘ 𝐴 )  →  𝑟  ≠  𝐴 ) ) | 
						
							| 162 | 161 | imp | ⊢ ( ( ( 𝐴  ∈   No   ∧  𝐵  ∈   No  )  ∧  𝑟  ∈  (  R  ‘ 𝐴 ) )  →  𝑟  ≠  𝐴 ) | 
						
							| 163 | 162 | orcd | ⊢ ( ( ( 𝐴  ∈   No   ∧  𝐵  ∈   No  )  ∧  𝑟  ∈  (  R  ‘ 𝐴 ) )  →  ( 𝑟  ≠  𝐴  ∨  𝐵  ≠  𝐵 ) ) | 
						
							| 164 |  | simpr | ⊢ ( ( ( 𝐴  ∈   No   ∧  𝐵  ∈   No  )  ∧  𝑟  ∈  (  R  ‘ 𝐴 ) )  →  𝑟  ∈  (  R  ‘ 𝐴 ) ) | 
						
							| 165 |  | simplr | ⊢ ( ( ( 𝐴  ∈   No   ∧  𝐵  ∈   No  )  ∧  𝑟  ∈  (  R  ‘ 𝐴 ) )  →  𝐵  ∈   No  ) | 
						
							| 166 |  | opthneg | ⊢ ( ( 𝑟  ∈  (  R  ‘ 𝐴 )  ∧  𝐵  ∈   No  )  →  ( 〈 𝑟 ,  𝐵 〉  ≠  〈 𝐴 ,  𝐵 〉  ↔  ( 𝑟  ≠  𝐴  ∨  𝐵  ≠  𝐵 ) ) ) | 
						
							| 167 | 164 165 166 | syl2anc | ⊢ ( ( ( 𝐴  ∈   No   ∧  𝐵  ∈   No  )  ∧  𝑟  ∈  (  R  ‘ 𝐴 ) )  →  ( 〈 𝑟 ,  𝐵 〉  ≠  〈 𝐴 ,  𝐵 〉  ↔  ( 𝑟  ≠  𝐴  ∨  𝐵  ≠  𝐵 ) ) ) | 
						
							| 168 | 163 167 | mpbird | ⊢ ( ( ( 𝐴  ∈   No   ∧  𝐵  ∈   No  )  ∧  𝑟  ∈  (  R  ‘ 𝐴 ) )  →  〈 𝑟 ,  𝐵 〉  ≠  〈 𝐴 ,  𝐵 〉 ) | 
						
							| 169 |  | eldifsn | ⊢ ( 〈 𝑟 ,  𝐵 〉  ∈  ( ( ( ( (  L  ‘ 𝐴 )  ∪  (  R  ‘ 𝐴 ) )  ∪  { 𝐴 } )  ×  ( ( (  L  ‘ 𝐵 )  ∪  (  R  ‘ 𝐵 ) )  ∪  { 𝐵 } ) )  ∖  { 〈 𝐴 ,  𝐵 〉 } )  ↔  ( 〈 𝑟 ,  𝐵 〉  ∈  ( ( ( (  L  ‘ 𝐴 )  ∪  (  R  ‘ 𝐴 ) )  ∪  { 𝐴 } )  ×  ( ( (  L  ‘ 𝐵 )  ∪  (  R  ‘ 𝐵 ) )  ∪  { 𝐵 } ) )  ∧  〈 𝑟 ,  𝐵 〉  ≠  〈 𝐴 ,  𝐵 〉 ) ) | 
						
							| 170 | 155 168 169 | sylanbrc | ⊢ ( ( ( 𝐴  ∈   No   ∧  𝐵  ∈   No  )  ∧  𝑟  ∈  (  R  ‘ 𝐴 ) )  →  〈 𝑟 ,  𝐵 〉  ∈  ( ( ( ( (  L  ‘ 𝐴 )  ∪  (  R  ‘ 𝐴 ) )  ∪  { 𝐴 } )  ×  ( ( (  L  ‘ 𝐵 )  ∪  (  R  ‘ 𝐵 ) )  ∪  { 𝐵 } ) )  ∖  { 〈 𝐴 ,  𝐵 〉 } ) ) | 
						
							| 171 | 170 | fvresd | ⊢ ( ( ( 𝐴  ∈   No   ∧  𝐵  ∈   No  )  ∧  𝑟  ∈  (  R  ‘ 𝐴 ) )  →  ( (  +s   ↾  ( ( ( ( (  L  ‘ 𝐴 )  ∪  (  R  ‘ 𝐴 ) )  ∪  { 𝐴 } )  ×  ( ( (  L  ‘ 𝐵 )  ∪  (  R  ‘ 𝐵 ) )  ∪  { 𝐵 } ) )  ∖  { 〈 𝐴 ,  𝐵 〉 } ) ) ‘ 〈 𝑟 ,  𝐵 〉 )  =  (  +s  ‘ 〈 𝑟 ,  𝐵 〉 ) ) | 
						
							| 172 |  | df-ov | ⊢ ( 𝑟 (  +s   ↾  ( ( ( ( (  L  ‘ 𝐴 )  ∪  (  R  ‘ 𝐴 ) )  ∪  { 𝐴 } )  ×  ( ( (  L  ‘ 𝐵 )  ∪  (  R  ‘ 𝐵 ) )  ∪  { 𝐵 } ) )  ∖  { 〈 𝐴 ,  𝐵 〉 } ) ) 𝐵 )  =  ( (  +s   ↾  ( ( ( ( (  L  ‘ 𝐴 )  ∪  (  R  ‘ 𝐴 ) )  ∪  { 𝐴 } )  ×  ( ( (  L  ‘ 𝐵 )  ∪  (  R  ‘ 𝐵 ) )  ∪  { 𝐵 } ) )  ∖  { 〈 𝐴 ,  𝐵 〉 } ) ) ‘ 〈 𝑟 ,  𝐵 〉 ) | 
						
							| 173 |  | df-ov | ⊢ ( 𝑟  +s  𝐵 )  =  (  +s  ‘ 〈 𝑟 ,  𝐵 〉 ) | 
						
							| 174 | 171 172 173 | 3eqtr4g | ⊢ ( ( ( 𝐴  ∈   No   ∧  𝐵  ∈   No  )  ∧  𝑟  ∈  (  R  ‘ 𝐴 ) )  →  ( 𝑟 (  +s   ↾  ( ( ( ( (  L  ‘ 𝐴 )  ∪  (  R  ‘ 𝐴 ) )  ∪  { 𝐴 } )  ×  ( ( (  L  ‘ 𝐵 )  ∪  (  R  ‘ 𝐵 ) )  ∪  { 𝐵 } ) )  ∖  { 〈 𝐴 ,  𝐵 〉 } ) ) 𝐵 )  =  ( 𝑟  +s  𝐵 ) ) | 
						
							| 175 | 149 174 | eqtrd | ⊢ ( ( ( 𝐴  ∈   No   ∧  𝐵  ∈   No  )  ∧  𝑟  ∈  (  R  ‘ 𝐴 ) )  →  ( 𝑟 (  +s   ↾  ( ( ( ( (  L  ‘ 𝐴 )  ∪  (  R  ‘ 𝐴 ) )  ∪  { 𝐴 } )  ×  ( ( (  L  ‘ 𝐵 )  ∪  (  R  ‘ 𝐵 ) )  ∪  { 𝐵 } ) )  ∖  { 〈 𝐴 ,  𝐵 〉 } ) ) ( 2nd  ‘ 〈 𝐴 ,  𝐵 〉 ) )  =  ( 𝑟  +s  𝐵 ) ) | 
						
							| 176 | 175 | eqeq2d | ⊢ ( ( ( 𝐴  ∈   No   ∧  𝐵  ∈   No  )  ∧  𝑟  ∈  (  R  ‘ 𝐴 ) )  →  ( 𝑦  =  ( 𝑟 (  +s   ↾  ( ( ( ( (  L  ‘ 𝐴 )  ∪  (  R  ‘ 𝐴 ) )  ∪  { 𝐴 } )  ×  ( ( (  L  ‘ 𝐵 )  ∪  (  R  ‘ 𝐵 ) )  ∪  { 𝐵 } ) )  ∖  { 〈 𝐴 ,  𝐵 〉 } ) ) ( 2nd  ‘ 〈 𝐴 ,  𝐵 〉 ) )  ↔  𝑦  =  ( 𝑟  +s  𝐵 ) ) ) | 
						
							| 177 | 147 176 | sylbida | ⊢ ( ( ( 𝐴  ∈   No   ∧  𝐵  ∈   No  )  ∧  𝑟  ∈  (  R  ‘ ( 1st  ‘ 〈 𝐴 ,  𝐵 〉 ) ) )  →  ( 𝑦  =  ( 𝑟 (  +s   ↾  ( ( ( ( (  L  ‘ 𝐴 )  ∪  (  R  ‘ 𝐴 ) )  ∪  { 𝐴 } )  ×  ( ( (  L  ‘ 𝐵 )  ∪  (  R  ‘ 𝐵 ) )  ∪  { 𝐵 } ) )  ∖  { 〈 𝐴 ,  𝐵 〉 } ) ) ( 2nd  ‘ 〈 𝐴 ,  𝐵 〉 ) )  ↔  𝑦  =  ( 𝑟  +s  𝐵 ) ) ) | 
						
							| 178 | 146 177 | rexeqbidva | ⊢ ( ( 𝐴  ∈   No   ∧  𝐵  ∈   No  )  →  ( ∃ 𝑟  ∈  (  R  ‘ ( 1st  ‘ 〈 𝐴 ,  𝐵 〉 ) ) 𝑦  =  ( 𝑟 (  +s   ↾  ( ( ( ( (  L  ‘ 𝐴 )  ∪  (  R  ‘ 𝐴 ) )  ∪  { 𝐴 } )  ×  ( ( (  L  ‘ 𝐵 )  ∪  (  R  ‘ 𝐵 ) )  ∪  { 𝐵 } ) )  ∖  { 〈 𝐴 ,  𝐵 〉 } ) ) ( 2nd  ‘ 〈 𝐴 ,  𝐵 〉 ) )  ↔  ∃ 𝑟  ∈  (  R  ‘ 𝐴 ) 𝑦  =  ( 𝑟  +s  𝐵 ) ) ) | 
						
							| 179 | 178 | abbidv | ⊢ ( ( 𝐴  ∈   No   ∧  𝐵  ∈   No  )  →  { 𝑦  ∣  ∃ 𝑟  ∈  (  R  ‘ ( 1st  ‘ 〈 𝐴 ,  𝐵 〉 ) ) 𝑦  =  ( 𝑟 (  +s   ↾  ( ( ( ( (  L  ‘ 𝐴 )  ∪  (  R  ‘ 𝐴 ) )  ∪  { 𝐴 } )  ×  ( ( (  L  ‘ 𝐵 )  ∪  (  R  ‘ 𝐵 ) )  ∪  { 𝐵 } ) )  ∖  { 〈 𝐴 ,  𝐵 〉 } ) ) ( 2nd  ‘ 〈 𝐴 ,  𝐵 〉 ) ) }  =  { 𝑦  ∣  ∃ 𝑟  ∈  (  R  ‘ 𝐴 ) 𝑦  =  ( 𝑟  +s  𝐵 ) } ) | 
						
							| 180 | 72 | fveq2d | ⊢ ( ( 𝐴  ∈   No   ∧  𝐵  ∈   No  )  →  (  R  ‘ ( 2nd  ‘ 〈 𝐴 ,  𝐵 〉 ) )  =  (  R  ‘ 𝐵 ) ) | 
						
							| 181 | 180 | eleq2d | ⊢ ( ( 𝐴  ∈   No   ∧  𝐵  ∈   No  )  →  ( 𝑟  ∈  (  R  ‘ ( 2nd  ‘ 〈 𝐴 ,  𝐵 〉 ) )  ↔  𝑟  ∈  (  R  ‘ 𝐵 ) ) ) | 
						
							| 182 | 69 | adantr | ⊢ ( ( ( 𝐴  ∈   No   ∧  𝐵  ∈   No  )  ∧  𝑟  ∈  (  R  ‘ 𝐵 ) )  →  ( 1st  ‘ 〈 𝐴 ,  𝐵 〉 )  =  𝐴 ) | 
						
							| 183 | 182 | oveq1d | ⊢ ( ( ( 𝐴  ∈   No   ∧  𝐵  ∈   No  )  ∧  𝑟  ∈  (  R  ‘ 𝐵 ) )  →  ( ( 1st  ‘ 〈 𝐴 ,  𝐵 〉 ) (  +s   ↾  ( ( ( ( (  L  ‘ 𝐴 )  ∪  (  R  ‘ 𝐴 ) )  ∪  { 𝐴 } )  ×  ( ( (  L  ‘ 𝐵 )  ∪  (  R  ‘ 𝐵 ) )  ∪  { 𝐵 } ) )  ∖  { 〈 𝐴 ,  𝐵 〉 } ) ) 𝑟 )  =  ( 𝐴 (  +s   ↾  ( ( ( ( (  L  ‘ 𝐴 )  ∪  (  R  ‘ 𝐴 ) )  ∪  { 𝐴 } )  ×  ( ( (  L  ‘ 𝐵 )  ∪  (  R  ‘ 𝐵 ) )  ∪  { 𝐵 } ) )  ∖  { 〈 𝐴 ,  𝐵 〉 } ) ) 𝑟 ) ) | 
						
							| 184 | 114 | adantr | ⊢ ( ( ( 𝐴  ∈   No   ∧  𝐵  ∈   No  )  ∧  𝑟  ∈  (  R  ‘ 𝐵 ) )  →  𝐴  ∈  { 𝐴 } ) | 
						
							| 185 | 184 115 | syl | ⊢ ( ( ( 𝐴  ∈   No   ∧  𝐵  ∈   No  )  ∧  𝑟  ∈  (  R  ‘ 𝐵 ) )  →  𝐴  ∈  ( ( (  L  ‘ 𝐴 )  ∪  (  R  ‘ 𝐴 ) )  ∪  { 𝐴 } ) ) | 
						
							| 186 |  | elun2 | ⊢ ( 𝑟  ∈  (  R  ‘ 𝐵 )  →  𝑟  ∈  ( (  L  ‘ 𝐵 )  ∪  (  R  ‘ 𝐵 ) ) ) | 
						
							| 187 | 186 | adantl | ⊢ ( ( ( 𝐴  ∈   No   ∧  𝐵  ∈   No  )  ∧  𝑟  ∈  (  R  ‘ 𝐵 ) )  →  𝑟  ∈  ( (  L  ‘ 𝐵 )  ∪  (  R  ‘ 𝐵 ) ) ) | 
						
							| 188 |  | elun1 | ⊢ ( 𝑟  ∈  ( (  L  ‘ 𝐵 )  ∪  (  R  ‘ 𝐵 ) )  →  𝑟  ∈  ( ( (  L  ‘ 𝐵 )  ∪  (  R  ‘ 𝐵 ) )  ∪  { 𝐵 } ) ) | 
						
							| 189 | 187 188 | syl | ⊢ ( ( ( 𝐴  ∈   No   ∧  𝐵  ∈   No  )  ∧  𝑟  ∈  (  R  ‘ 𝐵 ) )  →  𝑟  ∈  ( ( (  L  ‘ 𝐵 )  ∪  (  R  ‘ 𝐵 ) )  ∪  { 𝐵 } ) ) | 
						
							| 190 | 185 189 | opelxpd | ⊢ ( ( ( 𝐴  ∈   No   ∧  𝐵  ∈   No  )  ∧  𝑟  ∈  (  R  ‘ 𝐵 ) )  →  〈 𝐴 ,  𝑟 〉  ∈  ( ( ( (  L  ‘ 𝐴 )  ∪  (  R  ‘ 𝐴 ) )  ∪  { 𝐴 } )  ×  ( ( (  L  ‘ 𝐵 )  ∪  (  R  ‘ 𝐵 ) )  ∪  { 𝐵 } ) ) ) | 
						
							| 191 |  | rightirr | ⊢ ¬  𝐵  ∈  (  R  ‘ 𝐵 ) | 
						
							| 192 | 191 | a1i | ⊢ ( ( 𝐴  ∈   No   ∧  𝐵  ∈   No  )  →  ¬  𝐵  ∈  (  R  ‘ 𝐵 ) ) | 
						
							| 193 |  | eleq1 | ⊢ ( 𝑟  =  𝐵  →  ( 𝑟  ∈  (  R  ‘ 𝐵 )  ↔  𝐵  ∈  (  R  ‘ 𝐵 ) ) ) | 
						
							| 194 | 193 | notbid | ⊢ ( 𝑟  =  𝐵  →  ( ¬  𝑟  ∈  (  R  ‘ 𝐵 )  ↔  ¬  𝐵  ∈  (  R  ‘ 𝐵 ) ) ) | 
						
							| 195 | 192 194 | syl5ibrcom | ⊢ ( ( 𝐴  ∈   No   ∧  𝐵  ∈   No  )  →  ( 𝑟  =  𝐵  →  ¬  𝑟  ∈  (  R  ‘ 𝐵 ) ) ) | 
						
							| 196 | 195 | necon2ad | ⊢ ( ( 𝐴  ∈   No   ∧  𝐵  ∈   No  )  →  ( 𝑟  ∈  (  R  ‘ 𝐵 )  →  𝑟  ≠  𝐵 ) ) | 
						
							| 197 | 196 | imp | ⊢ ( ( ( 𝐴  ∈   No   ∧  𝐵  ∈   No  )  ∧  𝑟  ∈  (  R  ‘ 𝐵 ) )  →  𝑟  ≠  𝐵 ) | 
						
							| 198 | 197 | olcd | ⊢ ( ( ( 𝐴  ∈   No   ∧  𝐵  ∈   No  )  ∧  𝑟  ∈  (  R  ‘ 𝐵 ) )  →  ( 𝐴  ≠  𝐴  ∨  𝑟  ≠  𝐵 ) ) | 
						
							| 199 |  | opthneg | ⊢ ( ( 𝐴  ∈   No   ∧  𝑟  ∈  (  R  ‘ 𝐵 ) )  →  ( 〈 𝐴 ,  𝑟 〉  ≠  〈 𝐴 ,  𝐵 〉  ↔  ( 𝐴  ≠  𝐴  ∨  𝑟  ≠  𝐵 ) ) ) | 
						
							| 200 | 199 | adantlr | ⊢ ( ( ( 𝐴  ∈   No   ∧  𝐵  ∈   No  )  ∧  𝑟  ∈  (  R  ‘ 𝐵 ) )  →  ( 〈 𝐴 ,  𝑟 〉  ≠  〈 𝐴 ,  𝐵 〉  ↔  ( 𝐴  ≠  𝐴  ∨  𝑟  ≠  𝐵 ) ) ) | 
						
							| 201 | 198 200 | mpbird | ⊢ ( ( ( 𝐴  ∈   No   ∧  𝐵  ∈   No  )  ∧  𝑟  ∈  (  R  ‘ 𝐵 ) )  →  〈 𝐴 ,  𝑟 〉  ≠  〈 𝐴 ,  𝐵 〉 ) | 
						
							| 202 |  | eldifsn | ⊢ ( 〈 𝐴 ,  𝑟 〉  ∈  ( ( ( ( (  L  ‘ 𝐴 )  ∪  (  R  ‘ 𝐴 ) )  ∪  { 𝐴 } )  ×  ( ( (  L  ‘ 𝐵 )  ∪  (  R  ‘ 𝐵 ) )  ∪  { 𝐵 } ) )  ∖  { 〈 𝐴 ,  𝐵 〉 } )  ↔  ( 〈 𝐴 ,  𝑟 〉  ∈  ( ( ( (  L  ‘ 𝐴 )  ∪  (  R  ‘ 𝐴 ) )  ∪  { 𝐴 } )  ×  ( ( (  L  ‘ 𝐵 )  ∪  (  R  ‘ 𝐵 ) )  ∪  { 𝐵 } ) )  ∧  〈 𝐴 ,  𝑟 〉  ≠  〈 𝐴 ,  𝐵 〉 ) ) | 
						
							| 203 | 190 201 202 | sylanbrc | ⊢ ( ( ( 𝐴  ∈   No   ∧  𝐵  ∈   No  )  ∧  𝑟  ∈  (  R  ‘ 𝐵 ) )  →  〈 𝐴 ,  𝑟 〉  ∈  ( ( ( ( (  L  ‘ 𝐴 )  ∪  (  R  ‘ 𝐴 ) )  ∪  { 𝐴 } )  ×  ( ( (  L  ‘ 𝐵 )  ∪  (  R  ‘ 𝐵 ) )  ∪  { 𝐵 } ) )  ∖  { 〈 𝐴 ,  𝐵 〉 } ) ) | 
						
							| 204 | 203 | fvresd | ⊢ ( ( ( 𝐴  ∈   No   ∧  𝐵  ∈   No  )  ∧  𝑟  ∈  (  R  ‘ 𝐵 ) )  →  ( (  +s   ↾  ( ( ( ( (  L  ‘ 𝐴 )  ∪  (  R  ‘ 𝐴 ) )  ∪  { 𝐴 } )  ×  ( ( (  L  ‘ 𝐵 )  ∪  (  R  ‘ 𝐵 ) )  ∪  { 𝐵 } ) )  ∖  { 〈 𝐴 ,  𝐵 〉 } ) ) ‘ 〈 𝐴 ,  𝑟 〉 )  =  (  +s  ‘ 〈 𝐴 ,  𝑟 〉 ) ) | 
						
							| 205 |  | df-ov | ⊢ ( 𝐴 (  +s   ↾  ( ( ( ( (  L  ‘ 𝐴 )  ∪  (  R  ‘ 𝐴 ) )  ∪  { 𝐴 } )  ×  ( ( (  L  ‘ 𝐵 )  ∪  (  R  ‘ 𝐵 ) )  ∪  { 𝐵 } ) )  ∖  { 〈 𝐴 ,  𝐵 〉 } ) ) 𝑟 )  =  ( (  +s   ↾  ( ( ( ( (  L  ‘ 𝐴 )  ∪  (  R  ‘ 𝐴 ) )  ∪  { 𝐴 } )  ×  ( ( (  L  ‘ 𝐵 )  ∪  (  R  ‘ 𝐵 ) )  ∪  { 𝐵 } ) )  ∖  { 〈 𝐴 ,  𝐵 〉 } ) ) ‘ 〈 𝐴 ,  𝑟 〉 ) | 
						
							| 206 |  | df-ov | ⊢ ( 𝐴  +s  𝑟 )  =  (  +s  ‘ 〈 𝐴 ,  𝑟 〉 ) | 
						
							| 207 | 204 205 206 | 3eqtr4g | ⊢ ( ( ( 𝐴  ∈   No   ∧  𝐵  ∈   No  )  ∧  𝑟  ∈  (  R  ‘ 𝐵 ) )  →  ( 𝐴 (  +s   ↾  ( ( ( ( (  L  ‘ 𝐴 )  ∪  (  R  ‘ 𝐴 ) )  ∪  { 𝐴 } )  ×  ( ( (  L  ‘ 𝐵 )  ∪  (  R  ‘ 𝐵 ) )  ∪  { 𝐵 } ) )  ∖  { 〈 𝐴 ,  𝐵 〉 } ) ) 𝑟 )  =  ( 𝐴  +s  𝑟 ) ) | 
						
							| 208 | 183 207 | eqtrd | ⊢ ( ( ( 𝐴  ∈   No   ∧  𝐵  ∈   No  )  ∧  𝑟  ∈  (  R  ‘ 𝐵 ) )  →  ( ( 1st  ‘ 〈 𝐴 ,  𝐵 〉 ) (  +s   ↾  ( ( ( ( (  L  ‘ 𝐴 )  ∪  (  R  ‘ 𝐴 ) )  ∪  { 𝐴 } )  ×  ( ( (  L  ‘ 𝐵 )  ∪  (  R  ‘ 𝐵 ) )  ∪  { 𝐵 } ) )  ∖  { 〈 𝐴 ,  𝐵 〉 } ) ) 𝑟 )  =  ( 𝐴  +s  𝑟 ) ) | 
						
							| 209 | 208 | eqeq2d | ⊢ ( ( ( 𝐴  ∈   No   ∧  𝐵  ∈   No  )  ∧  𝑟  ∈  (  R  ‘ 𝐵 ) )  →  ( 𝑧  =  ( ( 1st  ‘ 〈 𝐴 ,  𝐵 〉 ) (  +s   ↾  ( ( ( ( (  L  ‘ 𝐴 )  ∪  (  R  ‘ 𝐴 ) )  ∪  { 𝐴 } )  ×  ( ( (  L  ‘ 𝐵 )  ∪  (  R  ‘ 𝐵 ) )  ∪  { 𝐵 } ) )  ∖  { 〈 𝐴 ,  𝐵 〉 } ) ) 𝑟 )  ↔  𝑧  =  ( 𝐴  +s  𝑟 ) ) ) | 
						
							| 210 | 181 209 | sylbida | ⊢ ( ( ( 𝐴  ∈   No   ∧  𝐵  ∈   No  )  ∧  𝑟  ∈  (  R  ‘ ( 2nd  ‘ 〈 𝐴 ,  𝐵 〉 ) ) )  →  ( 𝑧  =  ( ( 1st  ‘ 〈 𝐴 ,  𝐵 〉 ) (  +s   ↾  ( ( ( ( (  L  ‘ 𝐴 )  ∪  (  R  ‘ 𝐴 ) )  ∪  { 𝐴 } )  ×  ( ( (  L  ‘ 𝐵 )  ∪  (  R  ‘ 𝐵 ) )  ∪  { 𝐵 } ) )  ∖  { 〈 𝐴 ,  𝐵 〉 } ) ) 𝑟 )  ↔  𝑧  =  ( 𝐴  +s  𝑟 ) ) ) | 
						
							| 211 | 180 210 | rexeqbidva | ⊢ ( ( 𝐴  ∈   No   ∧  𝐵  ∈   No  )  →  ( ∃ 𝑟  ∈  (  R  ‘ ( 2nd  ‘ 〈 𝐴 ,  𝐵 〉 ) ) 𝑧  =  ( ( 1st  ‘ 〈 𝐴 ,  𝐵 〉 ) (  +s   ↾  ( ( ( ( (  L  ‘ 𝐴 )  ∪  (  R  ‘ 𝐴 ) )  ∪  { 𝐴 } )  ×  ( ( (  L  ‘ 𝐵 )  ∪  (  R  ‘ 𝐵 ) )  ∪  { 𝐵 } ) )  ∖  { 〈 𝐴 ,  𝐵 〉 } ) ) 𝑟 )  ↔  ∃ 𝑟  ∈  (  R  ‘ 𝐵 ) 𝑧  =  ( 𝐴  +s  𝑟 ) ) ) | 
						
							| 212 | 211 | abbidv | ⊢ ( ( 𝐴  ∈   No   ∧  𝐵  ∈   No  )  →  { 𝑧  ∣  ∃ 𝑟  ∈  (  R  ‘ ( 2nd  ‘ 〈 𝐴 ,  𝐵 〉 ) ) 𝑧  =  ( ( 1st  ‘ 〈 𝐴 ,  𝐵 〉 ) (  +s   ↾  ( ( ( ( (  L  ‘ 𝐴 )  ∪  (  R  ‘ 𝐴 ) )  ∪  { 𝐴 } )  ×  ( ( (  L  ‘ 𝐵 )  ∪  (  R  ‘ 𝐵 ) )  ∪  { 𝐵 } ) )  ∖  { 〈 𝐴 ,  𝐵 〉 } ) ) 𝑟 ) }  =  { 𝑧  ∣  ∃ 𝑟  ∈  (  R  ‘ 𝐵 ) 𝑧  =  ( 𝐴  +s  𝑟 ) } ) | 
						
							| 213 | 179 212 | uneq12d | ⊢ ( ( 𝐴  ∈   No   ∧  𝐵  ∈   No  )  →  ( { 𝑦  ∣  ∃ 𝑟  ∈  (  R  ‘ ( 1st  ‘ 〈 𝐴 ,  𝐵 〉 ) ) 𝑦  =  ( 𝑟 (  +s   ↾  ( ( ( ( (  L  ‘ 𝐴 )  ∪  (  R  ‘ 𝐴 ) )  ∪  { 𝐴 } )  ×  ( ( (  L  ‘ 𝐵 )  ∪  (  R  ‘ 𝐵 ) )  ∪  { 𝐵 } ) )  ∖  { 〈 𝐴 ,  𝐵 〉 } ) ) ( 2nd  ‘ 〈 𝐴 ,  𝐵 〉 ) ) }  ∪  { 𝑧  ∣  ∃ 𝑟  ∈  (  R  ‘ ( 2nd  ‘ 〈 𝐴 ,  𝐵 〉 ) ) 𝑧  =  ( ( 1st  ‘ 〈 𝐴 ,  𝐵 〉 ) (  +s   ↾  ( ( ( ( (  L  ‘ 𝐴 )  ∪  (  R  ‘ 𝐴 ) )  ∪  { 𝐴 } )  ×  ( ( (  L  ‘ 𝐵 )  ∪  (  R  ‘ 𝐵 ) )  ∪  { 𝐵 } ) )  ∖  { 〈 𝐴 ,  𝐵 〉 } ) ) 𝑟 ) } )  =  ( { 𝑦  ∣  ∃ 𝑟  ∈  (  R  ‘ 𝐴 ) 𝑦  =  ( 𝑟  +s  𝐵 ) }  ∪  { 𝑧  ∣  ∃ 𝑟  ∈  (  R  ‘ 𝐵 ) 𝑧  =  ( 𝐴  +s  𝑟 ) } ) ) | 
						
							| 214 | 145 213 | oveq12d | ⊢ ( ( 𝐴  ∈   No   ∧  𝐵  ∈   No  )  →  ( ( { 𝑦  ∣  ∃ 𝑙  ∈  (  L  ‘ ( 1st  ‘ 〈 𝐴 ,  𝐵 〉 ) ) 𝑦  =  ( 𝑙 (  +s   ↾  ( ( ( ( (  L  ‘ 𝐴 )  ∪  (  R  ‘ 𝐴 ) )  ∪  { 𝐴 } )  ×  ( ( (  L  ‘ 𝐵 )  ∪  (  R  ‘ 𝐵 ) )  ∪  { 𝐵 } ) )  ∖  { 〈 𝐴 ,  𝐵 〉 } ) ) ( 2nd  ‘ 〈 𝐴 ,  𝐵 〉 ) ) }  ∪  { 𝑧  ∣  ∃ 𝑙  ∈  (  L  ‘ ( 2nd  ‘ 〈 𝐴 ,  𝐵 〉 ) ) 𝑧  =  ( ( 1st  ‘ 〈 𝐴 ,  𝐵 〉 ) (  +s   ↾  ( ( ( ( (  L  ‘ 𝐴 )  ∪  (  R  ‘ 𝐴 ) )  ∪  { 𝐴 } )  ×  ( ( (  L  ‘ 𝐵 )  ∪  (  R  ‘ 𝐵 ) )  ∪  { 𝐵 } ) )  ∖  { 〈 𝐴 ,  𝐵 〉 } ) ) 𝑙 ) } )  |s  ( { 𝑦  ∣  ∃ 𝑟  ∈  (  R  ‘ ( 1st  ‘ 〈 𝐴 ,  𝐵 〉 ) ) 𝑦  =  ( 𝑟 (  +s   ↾  ( ( ( ( (  L  ‘ 𝐴 )  ∪  (  R  ‘ 𝐴 ) )  ∪  { 𝐴 } )  ×  ( ( (  L  ‘ 𝐵 )  ∪  (  R  ‘ 𝐵 ) )  ∪  { 𝐵 } ) )  ∖  { 〈 𝐴 ,  𝐵 〉 } ) ) ( 2nd  ‘ 〈 𝐴 ,  𝐵 〉 ) ) }  ∪  { 𝑧  ∣  ∃ 𝑟  ∈  (  R  ‘ ( 2nd  ‘ 〈 𝐴 ,  𝐵 〉 ) ) 𝑧  =  ( ( 1st  ‘ 〈 𝐴 ,  𝐵 〉 ) (  +s   ↾  ( ( ( ( (  L  ‘ 𝐴 )  ∪  (  R  ‘ 𝐴 ) )  ∪  { 𝐴 } )  ×  ( ( (  L  ‘ 𝐵 )  ∪  (  R  ‘ 𝐵 ) )  ∪  { 𝐵 } ) )  ∖  { 〈 𝐴 ,  𝐵 〉 } ) ) 𝑟 ) } ) )  =  ( ( { 𝑦  ∣  ∃ 𝑙  ∈  (  L  ‘ 𝐴 ) 𝑦  =  ( 𝑙  +s  𝐵 ) }  ∪  { 𝑧  ∣  ∃ 𝑙  ∈  (  L  ‘ 𝐵 ) 𝑧  =  ( 𝐴  +s  𝑙 ) } )  |s  ( { 𝑦  ∣  ∃ 𝑟  ∈  (  R  ‘ 𝐴 ) 𝑦  =  ( 𝑟  +s  𝐵 ) }  ∪  { 𝑧  ∣  ∃ 𝑟  ∈  (  R  ‘ 𝐵 ) 𝑧  =  ( 𝐴  +s  𝑟 ) } ) ) ) | 
						
							| 215 | 68 214 | eqtrid | ⊢ ( ( 𝐴  ∈   No   ∧  𝐵  ∈   No  )  →  ( 〈 𝐴 ,  𝐵 〉 ( 𝑥  ∈  V ,  𝑎  ∈  V  ↦  ( ( { 𝑦  ∣  ∃ 𝑙  ∈  (  L  ‘ ( 1st  ‘ 𝑥 ) ) 𝑦  =  ( 𝑙 𝑎 ( 2nd  ‘ 𝑥 ) ) }  ∪  { 𝑧  ∣  ∃ 𝑙  ∈  (  L  ‘ ( 2nd  ‘ 𝑥 ) ) 𝑧  =  ( ( 1st  ‘ 𝑥 ) 𝑎 𝑙 ) } )  |s  ( { 𝑦  ∣  ∃ 𝑟  ∈  (  R  ‘ ( 1st  ‘ 𝑥 ) ) 𝑦  =  ( 𝑟 𝑎 ( 2nd  ‘ 𝑥 ) ) }  ∪  { 𝑧  ∣  ∃ 𝑟  ∈  (  R  ‘ ( 2nd  ‘ 𝑥 ) ) 𝑧  =  ( ( 1st  ‘ 𝑥 ) 𝑎 𝑟 ) } ) ) ) (  +s   ↾  ( ( ( ( (  L  ‘ 𝐴 )  ∪  (  R  ‘ 𝐴 ) )  ∪  { 𝐴 } )  ×  ( ( (  L  ‘ 𝐵 )  ∪  (  R  ‘ 𝐵 ) )  ∪  { 𝐵 } ) )  ∖  { 〈 𝐴 ,  𝐵 〉 } ) ) )  =  ( ( { 𝑦  ∣  ∃ 𝑙  ∈  (  L  ‘ 𝐴 ) 𝑦  =  ( 𝑙  +s  𝐵 ) }  ∪  { 𝑧  ∣  ∃ 𝑙  ∈  (  L  ‘ 𝐵 ) 𝑧  =  ( 𝐴  +s  𝑙 ) } )  |s  ( { 𝑦  ∣  ∃ 𝑟  ∈  (  R  ‘ 𝐴 ) 𝑦  =  ( 𝑟  +s  𝐵 ) }  ∪  { 𝑧  ∣  ∃ 𝑟  ∈  (  R  ‘ 𝐵 ) 𝑧  =  ( 𝐴  +s  𝑟 ) } ) ) ) | 
						
							| 216 | 2 215 | eqtrd | ⊢ ( ( 𝐴  ∈   No   ∧  𝐵  ∈   No  )  →  ( 𝐴  +s  𝐵 )  =  ( ( { 𝑦  ∣  ∃ 𝑙  ∈  (  L  ‘ 𝐴 ) 𝑦  =  ( 𝑙  +s  𝐵 ) }  ∪  { 𝑧  ∣  ∃ 𝑙  ∈  (  L  ‘ 𝐵 ) 𝑧  =  ( 𝐴  +s  𝑙 ) } )  |s  ( { 𝑦  ∣  ∃ 𝑟  ∈  (  R  ‘ 𝐴 ) 𝑦  =  ( 𝑟  +s  𝐵 ) }  ∪  { 𝑧  ∣  ∃ 𝑟  ∈  (  R  ‘ 𝐵 ) 𝑧  =  ( 𝐴  +s  𝑟 ) } ) ) ) |