Metamath Proof Explorer


Theorem opthneg

Description: Two ordered pairs are not equal iff their first components or their second components are not equal. (Contributed by AV, 13-Dec-2018)

Ref Expression
Assertion opthneg ( ( 𝐴𝑉𝐵𝑊 ) → ( ⟨ 𝐴 , 𝐵 ⟩ ≠ ⟨ 𝐶 , 𝐷 ⟩ ↔ ( 𝐴𝐶𝐵𝐷 ) ) )

Proof

Step Hyp Ref Expression
1 df-ne ( ⟨ 𝐴 , 𝐵 ⟩ ≠ ⟨ 𝐶 , 𝐷 ⟩ ↔ ¬ ⟨ 𝐴 , 𝐵 ⟩ = ⟨ 𝐶 , 𝐷 ⟩ )
2 opthg ( ( 𝐴𝑉𝐵𝑊 ) → ( ⟨ 𝐴 , 𝐵 ⟩ = ⟨ 𝐶 , 𝐷 ⟩ ↔ ( 𝐴 = 𝐶𝐵 = 𝐷 ) ) )
3 2 notbid ( ( 𝐴𝑉𝐵𝑊 ) → ( ¬ ⟨ 𝐴 , 𝐵 ⟩ = ⟨ 𝐶 , 𝐷 ⟩ ↔ ¬ ( 𝐴 = 𝐶𝐵 = 𝐷 ) ) )
4 ianor ( ¬ ( 𝐴 = 𝐶𝐵 = 𝐷 ) ↔ ( ¬ 𝐴 = 𝐶 ∨ ¬ 𝐵 = 𝐷 ) )
5 df-ne ( 𝐴𝐶 ↔ ¬ 𝐴 = 𝐶 )
6 df-ne ( 𝐵𝐷 ↔ ¬ 𝐵 = 𝐷 )
7 5 6 orbi12i ( ( 𝐴𝐶𝐵𝐷 ) ↔ ( ¬ 𝐴 = 𝐶 ∨ ¬ 𝐵 = 𝐷 ) )
8 4 7 bitr4i ( ¬ ( 𝐴 = 𝐶𝐵 = 𝐷 ) ↔ ( 𝐴𝐶𝐵𝐷 ) )
9 3 8 bitrdi ( ( 𝐴𝑉𝐵𝑊 ) → ( ¬ ⟨ 𝐴 , 𝐵 ⟩ = ⟨ 𝐶 , 𝐷 ⟩ ↔ ( 𝐴𝐶𝐵𝐷 ) ) )
10 1 9 bitrid ( ( 𝐴𝑉𝐵𝑊 ) → ( ⟨ 𝐴 , 𝐵 ⟩ ≠ ⟨ 𝐶 , 𝐷 ⟩ ↔ ( 𝐴𝐶𝐵𝐷 ) ) )