Step |
Hyp |
Ref |
Expression |
1 |
|
addsval |
⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) → ( 𝐴 +s 𝐵 ) = ( ( { 𝑎 ∣ ∃ 𝑏 ∈ ( L ‘ 𝐴 ) 𝑎 = ( 𝑏 +s 𝐵 ) } ∪ { 𝑐 ∣ ∃ 𝑏 ∈ ( L ‘ 𝐵 ) 𝑐 = ( 𝐴 +s 𝑏 ) } ) |s ( { 𝑎 ∣ ∃ 𝑑 ∈ ( R ‘ 𝐴 ) 𝑎 = ( 𝑑 +s 𝐵 ) } ∪ { 𝑐 ∣ ∃ 𝑑 ∈ ( R ‘ 𝐵 ) 𝑐 = ( 𝐴 +s 𝑑 ) } ) ) ) |
2 |
|
eqeq1 |
⊢ ( 𝑎 = 𝑦 → ( 𝑎 = ( 𝑏 +s 𝐵 ) ↔ 𝑦 = ( 𝑏 +s 𝐵 ) ) ) |
3 |
2
|
rexbidv |
⊢ ( 𝑎 = 𝑦 → ( ∃ 𝑏 ∈ ( L ‘ 𝐴 ) 𝑎 = ( 𝑏 +s 𝐵 ) ↔ ∃ 𝑏 ∈ ( L ‘ 𝐴 ) 𝑦 = ( 𝑏 +s 𝐵 ) ) ) |
4 |
|
oveq1 |
⊢ ( 𝑏 = 𝑙 → ( 𝑏 +s 𝐵 ) = ( 𝑙 +s 𝐵 ) ) |
5 |
4
|
eqeq2d |
⊢ ( 𝑏 = 𝑙 → ( 𝑦 = ( 𝑏 +s 𝐵 ) ↔ 𝑦 = ( 𝑙 +s 𝐵 ) ) ) |
6 |
5
|
cbvrexvw |
⊢ ( ∃ 𝑏 ∈ ( L ‘ 𝐴 ) 𝑦 = ( 𝑏 +s 𝐵 ) ↔ ∃ 𝑙 ∈ ( L ‘ 𝐴 ) 𝑦 = ( 𝑙 +s 𝐵 ) ) |
7 |
3 6
|
bitrdi |
⊢ ( 𝑎 = 𝑦 → ( ∃ 𝑏 ∈ ( L ‘ 𝐴 ) 𝑎 = ( 𝑏 +s 𝐵 ) ↔ ∃ 𝑙 ∈ ( L ‘ 𝐴 ) 𝑦 = ( 𝑙 +s 𝐵 ) ) ) |
8 |
7
|
cbvabv |
⊢ { 𝑎 ∣ ∃ 𝑏 ∈ ( L ‘ 𝐴 ) 𝑎 = ( 𝑏 +s 𝐵 ) } = { 𝑦 ∣ ∃ 𝑙 ∈ ( L ‘ 𝐴 ) 𝑦 = ( 𝑙 +s 𝐵 ) } |
9 |
|
eqeq1 |
⊢ ( 𝑐 = 𝑧 → ( 𝑐 = ( 𝐴 +s 𝑏 ) ↔ 𝑧 = ( 𝐴 +s 𝑏 ) ) ) |
10 |
9
|
rexbidv |
⊢ ( 𝑐 = 𝑧 → ( ∃ 𝑏 ∈ ( L ‘ 𝐵 ) 𝑐 = ( 𝐴 +s 𝑏 ) ↔ ∃ 𝑏 ∈ ( L ‘ 𝐵 ) 𝑧 = ( 𝐴 +s 𝑏 ) ) ) |
11 |
|
oveq2 |
⊢ ( 𝑏 = 𝑚 → ( 𝐴 +s 𝑏 ) = ( 𝐴 +s 𝑚 ) ) |
12 |
11
|
eqeq2d |
⊢ ( 𝑏 = 𝑚 → ( 𝑧 = ( 𝐴 +s 𝑏 ) ↔ 𝑧 = ( 𝐴 +s 𝑚 ) ) ) |
13 |
12
|
cbvrexvw |
⊢ ( ∃ 𝑏 ∈ ( L ‘ 𝐵 ) 𝑧 = ( 𝐴 +s 𝑏 ) ↔ ∃ 𝑚 ∈ ( L ‘ 𝐵 ) 𝑧 = ( 𝐴 +s 𝑚 ) ) |
14 |
10 13
|
bitrdi |
⊢ ( 𝑐 = 𝑧 → ( ∃ 𝑏 ∈ ( L ‘ 𝐵 ) 𝑐 = ( 𝐴 +s 𝑏 ) ↔ ∃ 𝑚 ∈ ( L ‘ 𝐵 ) 𝑧 = ( 𝐴 +s 𝑚 ) ) ) |
15 |
14
|
cbvabv |
⊢ { 𝑐 ∣ ∃ 𝑏 ∈ ( L ‘ 𝐵 ) 𝑐 = ( 𝐴 +s 𝑏 ) } = { 𝑧 ∣ ∃ 𝑚 ∈ ( L ‘ 𝐵 ) 𝑧 = ( 𝐴 +s 𝑚 ) } |
16 |
8 15
|
uneq12i |
⊢ ( { 𝑎 ∣ ∃ 𝑏 ∈ ( L ‘ 𝐴 ) 𝑎 = ( 𝑏 +s 𝐵 ) } ∪ { 𝑐 ∣ ∃ 𝑏 ∈ ( L ‘ 𝐵 ) 𝑐 = ( 𝐴 +s 𝑏 ) } ) = ( { 𝑦 ∣ ∃ 𝑙 ∈ ( L ‘ 𝐴 ) 𝑦 = ( 𝑙 +s 𝐵 ) } ∪ { 𝑧 ∣ ∃ 𝑚 ∈ ( L ‘ 𝐵 ) 𝑧 = ( 𝐴 +s 𝑚 ) } ) |
17 |
|
eqeq1 |
⊢ ( 𝑎 = 𝑤 → ( 𝑎 = ( 𝑑 +s 𝐵 ) ↔ 𝑤 = ( 𝑑 +s 𝐵 ) ) ) |
18 |
17
|
rexbidv |
⊢ ( 𝑎 = 𝑤 → ( ∃ 𝑑 ∈ ( R ‘ 𝐴 ) 𝑎 = ( 𝑑 +s 𝐵 ) ↔ ∃ 𝑑 ∈ ( R ‘ 𝐴 ) 𝑤 = ( 𝑑 +s 𝐵 ) ) ) |
19 |
|
oveq1 |
⊢ ( 𝑑 = 𝑟 → ( 𝑑 +s 𝐵 ) = ( 𝑟 +s 𝐵 ) ) |
20 |
19
|
eqeq2d |
⊢ ( 𝑑 = 𝑟 → ( 𝑤 = ( 𝑑 +s 𝐵 ) ↔ 𝑤 = ( 𝑟 +s 𝐵 ) ) ) |
21 |
20
|
cbvrexvw |
⊢ ( ∃ 𝑑 ∈ ( R ‘ 𝐴 ) 𝑤 = ( 𝑑 +s 𝐵 ) ↔ ∃ 𝑟 ∈ ( R ‘ 𝐴 ) 𝑤 = ( 𝑟 +s 𝐵 ) ) |
22 |
18 21
|
bitrdi |
⊢ ( 𝑎 = 𝑤 → ( ∃ 𝑑 ∈ ( R ‘ 𝐴 ) 𝑎 = ( 𝑑 +s 𝐵 ) ↔ ∃ 𝑟 ∈ ( R ‘ 𝐴 ) 𝑤 = ( 𝑟 +s 𝐵 ) ) ) |
23 |
22
|
cbvabv |
⊢ { 𝑎 ∣ ∃ 𝑑 ∈ ( R ‘ 𝐴 ) 𝑎 = ( 𝑑 +s 𝐵 ) } = { 𝑤 ∣ ∃ 𝑟 ∈ ( R ‘ 𝐴 ) 𝑤 = ( 𝑟 +s 𝐵 ) } |
24 |
|
eqeq1 |
⊢ ( 𝑐 = 𝑡 → ( 𝑐 = ( 𝐴 +s 𝑑 ) ↔ 𝑡 = ( 𝐴 +s 𝑑 ) ) ) |
25 |
24
|
rexbidv |
⊢ ( 𝑐 = 𝑡 → ( ∃ 𝑑 ∈ ( R ‘ 𝐵 ) 𝑐 = ( 𝐴 +s 𝑑 ) ↔ ∃ 𝑑 ∈ ( R ‘ 𝐵 ) 𝑡 = ( 𝐴 +s 𝑑 ) ) ) |
26 |
|
oveq2 |
⊢ ( 𝑑 = 𝑠 → ( 𝐴 +s 𝑑 ) = ( 𝐴 +s 𝑠 ) ) |
27 |
26
|
eqeq2d |
⊢ ( 𝑑 = 𝑠 → ( 𝑡 = ( 𝐴 +s 𝑑 ) ↔ 𝑡 = ( 𝐴 +s 𝑠 ) ) ) |
28 |
27
|
cbvrexvw |
⊢ ( ∃ 𝑑 ∈ ( R ‘ 𝐵 ) 𝑡 = ( 𝐴 +s 𝑑 ) ↔ ∃ 𝑠 ∈ ( R ‘ 𝐵 ) 𝑡 = ( 𝐴 +s 𝑠 ) ) |
29 |
25 28
|
bitrdi |
⊢ ( 𝑐 = 𝑡 → ( ∃ 𝑑 ∈ ( R ‘ 𝐵 ) 𝑐 = ( 𝐴 +s 𝑑 ) ↔ ∃ 𝑠 ∈ ( R ‘ 𝐵 ) 𝑡 = ( 𝐴 +s 𝑠 ) ) ) |
30 |
29
|
cbvabv |
⊢ { 𝑐 ∣ ∃ 𝑑 ∈ ( R ‘ 𝐵 ) 𝑐 = ( 𝐴 +s 𝑑 ) } = { 𝑡 ∣ ∃ 𝑠 ∈ ( R ‘ 𝐵 ) 𝑡 = ( 𝐴 +s 𝑠 ) } |
31 |
23 30
|
uneq12i |
⊢ ( { 𝑎 ∣ ∃ 𝑑 ∈ ( R ‘ 𝐴 ) 𝑎 = ( 𝑑 +s 𝐵 ) } ∪ { 𝑐 ∣ ∃ 𝑑 ∈ ( R ‘ 𝐵 ) 𝑐 = ( 𝐴 +s 𝑑 ) } ) = ( { 𝑤 ∣ ∃ 𝑟 ∈ ( R ‘ 𝐴 ) 𝑤 = ( 𝑟 +s 𝐵 ) } ∪ { 𝑡 ∣ ∃ 𝑠 ∈ ( R ‘ 𝐵 ) 𝑡 = ( 𝐴 +s 𝑠 ) } ) |
32 |
16 31
|
oveq12i |
⊢ ( ( { 𝑎 ∣ ∃ 𝑏 ∈ ( L ‘ 𝐴 ) 𝑎 = ( 𝑏 +s 𝐵 ) } ∪ { 𝑐 ∣ ∃ 𝑏 ∈ ( L ‘ 𝐵 ) 𝑐 = ( 𝐴 +s 𝑏 ) } ) |s ( { 𝑎 ∣ ∃ 𝑑 ∈ ( R ‘ 𝐴 ) 𝑎 = ( 𝑑 +s 𝐵 ) } ∪ { 𝑐 ∣ ∃ 𝑑 ∈ ( R ‘ 𝐵 ) 𝑐 = ( 𝐴 +s 𝑑 ) } ) ) = ( ( { 𝑦 ∣ ∃ 𝑙 ∈ ( L ‘ 𝐴 ) 𝑦 = ( 𝑙 +s 𝐵 ) } ∪ { 𝑧 ∣ ∃ 𝑚 ∈ ( L ‘ 𝐵 ) 𝑧 = ( 𝐴 +s 𝑚 ) } ) |s ( { 𝑤 ∣ ∃ 𝑟 ∈ ( R ‘ 𝐴 ) 𝑤 = ( 𝑟 +s 𝐵 ) } ∪ { 𝑡 ∣ ∃ 𝑠 ∈ ( R ‘ 𝐵 ) 𝑡 = ( 𝐴 +s 𝑠 ) } ) ) |
33 |
1 32
|
eqtrdi |
⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) → ( 𝐴 +s 𝐵 ) = ( ( { 𝑦 ∣ ∃ 𝑙 ∈ ( L ‘ 𝐴 ) 𝑦 = ( 𝑙 +s 𝐵 ) } ∪ { 𝑧 ∣ ∃ 𝑚 ∈ ( L ‘ 𝐵 ) 𝑧 = ( 𝐴 +s 𝑚 ) } ) |s ( { 𝑤 ∣ ∃ 𝑟 ∈ ( R ‘ 𝐴 ) 𝑤 = ( 𝑟 +s 𝐵 ) } ∪ { 𝑡 ∣ ∃ 𝑠 ∈ ( R ‘ 𝐵 ) 𝑡 = ( 𝐴 +s 𝑠 ) } ) ) ) |