| Step | Hyp | Ref | Expression | 
						
							| 1 |  | addsval |  |-  ( ( A e. No /\ B e. No ) -> ( A +s B ) = ( ( { a | E. b e. ( _Left ` A ) a = ( b +s B ) } u. { c | E. b e. ( _Left ` B ) c = ( A +s b ) } ) |s ( { a | E. d e. ( _Right ` A ) a = ( d +s B ) } u. { c | E. d e. ( _Right ` B ) c = ( A +s d ) } ) ) ) | 
						
							| 2 |  | eqeq1 |  |-  ( a = y -> ( a = ( b +s B ) <-> y = ( b +s B ) ) ) | 
						
							| 3 | 2 | rexbidv |  |-  ( a = y -> ( E. b e. ( _Left ` A ) a = ( b +s B ) <-> E. b e. ( _Left ` A ) y = ( b +s B ) ) ) | 
						
							| 4 |  | oveq1 |  |-  ( b = l -> ( b +s B ) = ( l +s B ) ) | 
						
							| 5 | 4 | eqeq2d |  |-  ( b = l -> ( y = ( b +s B ) <-> y = ( l +s B ) ) ) | 
						
							| 6 | 5 | cbvrexvw |  |-  ( E. b e. ( _Left ` A ) y = ( b +s B ) <-> E. l e. ( _Left ` A ) y = ( l +s B ) ) | 
						
							| 7 | 3 6 | bitrdi |  |-  ( a = y -> ( E. b e. ( _Left ` A ) a = ( b +s B ) <-> E. l e. ( _Left ` A ) y = ( l +s B ) ) ) | 
						
							| 8 | 7 | cbvabv |  |-  { a | E. b e. ( _Left ` A ) a = ( b +s B ) } = { y | E. l e. ( _Left ` A ) y = ( l +s B ) } | 
						
							| 9 |  | eqeq1 |  |-  ( c = z -> ( c = ( A +s b ) <-> z = ( A +s b ) ) ) | 
						
							| 10 | 9 | rexbidv |  |-  ( c = z -> ( E. b e. ( _Left ` B ) c = ( A +s b ) <-> E. b e. ( _Left ` B ) z = ( A +s b ) ) ) | 
						
							| 11 |  | oveq2 |  |-  ( b = m -> ( A +s b ) = ( A +s m ) ) | 
						
							| 12 | 11 | eqeq2d |  |-  ( b = m -> ( z = ( A +s b ) <-> z = ( A +s m ) ) ) | 
						
							| 13 | 12 | cbvrexvw |  |-  ( E. b e. ( _Left ` B ) z = ( A +s b ) <-> E. m e. ( _Left ` B ) z = ( A +s m ) ) | 
						
							| 14 | 10 13 | bitrdi |  |-  ( c = z -> ( E. b e. ( _Left ` B ) c = ( A +s b ) <-> E. m e. ( _Left ` B ) z = ( A +s m ) ) ) | 
						
							| 15 | 14 | cbvabv |  |-  { c | E. b e. ( _Left ` B ) c = ( A +s b ) } = { z | E. m e. ( _Left ` B ) z = ( A +s m ) } | 
						
							| 16 | 8 15 | uneq12i |  |-  ( { a | E. b e. ( _Left ` A ) a = ( b +s B ) } u. { c | E. b e. ( _Left ` B ) c = ( A +s b ) } ) = ( { y | E. l e. ( _Left ` A ) y = ( l +s B ) } u. { z | E. m e. ( _Left ` B ) z = ( A +s m ) } ) | 
						
							| 17 |  | eqeq1 |  |-  ( a = w -> ( a = ( d +s B ) <-> w = ( d +s B ) ) ) | 
						
							| 18 | 17 | rexbidv |  |-  ( a = w -> ( E. d e. ( _Right ` A ) a = ( d +s B ) <-> E. d e. ( _Right ` A ) w = ( d +s B ) ) ) | 
						
							| 19 |  | oveq1 |  |-  ( d = r -> ( d +s B ) = ( r +s B ) ) | 
						
							| 20 | 19 | eqeq2d |  |-  ( d = r -> ( w = ( d +s B ) <-> w = ( r +s B ) ) ) | 
						
							| 21 | 20 | cbvrexvw |  |-  ( E. d e. ( _Right ` A ) w = ( d +s B ) <-> E. r e. ( _Right ` A ) w = ( r +s B ) ) | 
						
							| 22 | 18 21 | bitrdi |  |-  ( a = w -> ( E. d e. ( _Right ` A ) a = ( d +s B ) <-> E. r e. ( _Right ` A ) w = ( r +s B ) ) ) | 
						
							| 23 | 22 | cbvabv |  |-  { a | E. d e. ( _Right ` A ) a = ( d +s B ) } = { w | E. r e. ( _Right ` A ) w = ( r +s B ) } | 
						
							| 24 |  | eqeq1 |  |-  ( c = t -> ( c = ( A +s d ) <-> t = ( A +s d ) ) ) | 
						
							| 25 | 24 | rexbidv |  |-  ( c = t -> ( E. d e. ( _Right ` B ) c = ( A +s d ) <-> E. d e. ( _Right ` B ) t = ( A +s d ) ) ) | 
						
							| 26 |  | oveq2 |  |-  ( d = s -> ( A +s d ) = ( A +s s ) ) | 
						
							| 27 | 26 | eqeq2d |  |-  ( d = s -> ( t = ( A +s d ) <-> t = ( A +s s ) ) ) | 
						
							| 28 | 27 | cbvrexvw |  |-  ( E. d e. ( _Right ` B ) t = ( A +s d ) <-> E. s e. ( _Right ` B ) t = ( A +s s ) ) | 
						
							| 29 | 25 28 | bitrdi |  |-  ( c = t -> ( E. d e. ( _Right ` B ) c = ( A +s d ) <-> E. s e. ( _Right ` B ) t = ( A +s s ) ) ) | 
						
							| 30 | 29 | cbvabv |  |-  { c | E. d e. ( _Right ` B ) c = ( A +s d ) } = { t | E. s e. ( _Right ` B ) t = ( A +s s ) } | 
						
							| 31 | 23 30 | uneq12i |  |-  ( { a | E. d e. ( _Right ` A ) a = ( d +s B ) } u. { c | E. d e. ( _Right ` B ) c = ( A +s d ) } ) = ( { w | E. r e. ( _Right ` A ) w = ( r +s B ) } u. { t | E. s e. ( _Right ` B ) t = ( A +s s ) } ) | 
						
							| 32 | 16 31 | oveq12i |  |-  ( ( { a | E. b e. ( _Left ` A ) a = ( b +s B ) } u. { c | E. b e. ( _Left ` B ) c = ( A +s b ) } ) |s ( { a | E. d e. ( _Right ` A ) a = ( d +s B ) } u. { c | E. d e. ( _Right ` B ) c = ( A +s d ) } ) ) = ( ( { y | E. l e. ( _Left ` A ) y = ( l +s B ) } u. { z | E. m e. ( _Left ` B ) z = ( A +s m ) } ) |s ( { w | E. r e. ( _Right ` A ) w = ( r +s B ) } u. { t | E. s e. ( _Right ` B ) t = ( A +s s ) } ) ) | 
						
							| 33 | 1 32 | eqtrdi |  |-  ( ( A e. No /\ B e. No ) -> ( A +s B ) = ( ( { y | E. l e. ( _Left ` A ) y = ( l +s B ) } u. { z | E. m e. ( _Left ` B ) z = ( A +s m ) } ) |s ( { w | E. r e. ( _Right ` A ) w = ( r +s B ) } u. { t | E. s e. ( _Right ` B ) t = ( A +s s ) } ) ) ) |