| Step | Hyp | Ref | Expression | 
						
							| 1 |  | addsfn |  |-  +s Fn ( No X. No ) | 
						
							| 2 |  | addscl |  |-  ( ( y e. No /\ z e. No ) -> ( y +s z ) e. No ) | 
						
							| 3 | 2 | rgen2 |  |-  A. y e. No A. z e. No ( y +s z ) e. No | 
						
							| 4 |  | fveq2 |  |-  ( x = <. y , z >. -> ( +s ` x ) = ( +s ` <. y , z >. ) ) | 
						
							| 5 |  | df-ov |  |-  ( y +s z ) = ( +s ` <. y , z >. ) | 
						
							| 6 | 4 5 | eqtr4di |  |-  ( x = <. y , z >. -> ( +s ` x ) = ( y +s z ) ) | 
						
							| 7 | 6 | eleq1d |  |-  ( x = <. y , z >. -> ( ( +s ` x ) e. No <-> ( y +s z ) e. No ) ) | 
						
							| 8 | 7 | ralxp |  |-  ( A. x e. ( No X. No ) ( +s ` x ) e. No <-> A. y e. No A. z e. No ( y +s z ) e. No ) | 
						
							| 9 | 3 8 | mpbir |  |-  A. x e. ( No X. No ) ( +s ` x ) e. No | 
						
							| 10 |  | ffnfv |  |-  ( +s : ( No X. No ) --> No <-> ( +s Fn ( No X. No ) /\ A. x e. ( No X. No ) ( +s ` x ) e. No ) ) | 
						
							| 11 | 1 9 10 | mpbir2an |  |-  +s : ( No X. No ) --> No |