Step |
Hyp |
Ref |
Expression |
1 |
|
addsfn |
|- +s Fn ( No X. No ) |
2 |
|
addscl |
|- ( ( y e. No /\ z e. No ) -> ( y +s z ) e. No ) |
3 |
2
|
rgen2 |
|- A. y e. No A. z e. No ( y +s z ) e. No |
4 |
|
fveq2 |
|- ( x = <. y , z >. -> ( +s ` x ) = ( +s ` <. y , z >. ) ) |
5 |
|
df-ov |
|- ( y +s z ) = ( +s ` <. y , z >. ) |
6 |
4 5
|
eqtr4di |
|- ( x = <. y , z >. -> ( +s ` x ) = ( y +s z ) ) |
7 |
6
|
eleq1d |
|- ( x = <. y , z >. -> ( ( +s ` x ) e. No <-> ( y +s z ) e. No ) ) |
8 |
7
|
ralxp |
|- ( A. x e. ( No X. No ) ( +s ` x ) e. No <-> A. y e. No A. z e. No ( y +s z ) e. No ) |
9 |
3 8
|
mpbir |
|- A. x e. ( No X. No ) ( +s ` x ) e. No |
10 |
|
ffnfv |
|- ( +s : ( No X. No ) --> No <-> ( +s Fn ( No X. No ) /\ A. x e. ( No X. No ) ( +s ` x ) e. No ) ) |
11 |
1 9 10
|
mpbir2an |
|- +s : ( No X. No ) --> No |