| Step | Hyp | Ref | Expression | 
						
							| 1 |  | addsf |  |-  +s : ( No X. No ) --> No | 
						
							| 2 |  | 0sno |  |-  0s e. No | 
						
							| 3 |  | opelxpi |  |-  ( ( z e. No /\ 0s e. No ) -> <. z , 0s >. e. ( No X. No ) ) | 
						
							| 4 | 2 3 | mpan2 |  |-  ( z e. No -> <. z , 0s >. e. ( No X. No ) ) | 
						
							| 5 |  | addsrid |  |-  ( z e. No -> ( z +s 0s ) = z ) | 
						
							| 6 | 5 | eqcomd |  |-  ( z e. No -> z = ( z +s 0s ) ) | 
						
							| 7 |  | fveq2 |  |-  ( x = <. z , 0s >. -> ( +s ` x ) = ( +s ` <. z , 0s >. ) ) | 
						
							| 8 |  | df-ov |  |-  ( z +s 0s ) = ( +s ` <. z , 0s >. ) | 
						
							| 9 | 7 8 | eqtr4di |  |-  ( x = <. z , 0s >. -> ( +s ` x ) = ( z +s 0s ) ) | 
						
							| 10 | 9 | rspceeqv |  |-  ( ( <. z , 0s >. e. ( No X. No ) /\ z = ( z +s 0s ) ) -> E. x e. ( No X. No ) z = ( +s ` x ) ) | 
						
							| 11 | 4 6 10 | syl2anc |  |-  ( z e. No -> E. x e. ( No X. No ) z = ( +s ` x ) ) | 
						
							| 12 | 11 | rgen |  |-  A. z e. No E. x e. ( No X. No ) z = ( +s ` x ) | 
						
							| 13 |  | dffo3 |  |-  ( +s : ( No X. No ) -onto-> No <-> ( +s : ( No X. No ) --> No /\ A. z e. No E. x e. ( No X. No ) z = ( +s ` x ) ) ) | 
						
							| 14 | 1 12 13 | mpbir2an |  |-  +s : ( No X. No ) -onto-> No |