Metamath Proof Explorer


Theorem addsf

Description: Function statement for surreal addition. (Contributed by Scott Fenton, 21-Jan-2025)

Ref Expression
Assertion addsf Could not format assertion : No typesetting found for |- +s : ( No X. No ) --> No with typecode |-

Proof

Step Hyp Ref Expression
1 addsfn Could not format +s Fn ( No X. No ) : No typesetting found for |- +s Fn ( No X. No ) with typecode |-
2 addscl Could not format ( ( y e. No /\ z e. No ) -> ( y +s z ) e. No ) : No typesetting found for |- ( ( y e. No /\ z e. No ) -> ( y +s z ) e. No ) with typecode |-
3 2 rgen2 Could not format A. y e. No A. z e. No ( y +s z ) e. No : No typesetting found for |- A. y e. No A. z e. No ( y +s z ) e. No with typecode |-
4 fveq2 Could not format ( x = <. y , z >. -> ( +s ` x ) = ( +s ` <. y , z >. ) ) : No typesetting found for |- ( x = <. y , z >. -> ( +s ` x ) = ( +s ` <. y , z >. ) ) with typecode |-
5 df-ov Could not format ( y +s z ) = ( +s ` <. y , z >. ) : No typesetting found for |- ( y +s z ) = ( +s ` <. y , z >. ) with typecode |-
6 4 5 eqtr4di Could not format ( x = <. y , z >. -> ( +s ` x ) = ( y +s z ) ) : No typesetting found for |- ( x = <. y , z >. -> ( +s ` x ) = ( y +s z ) ) with typecode |-
7 6 eleq1d Could not format ( x = <. y , z >. -> ( ( +s ` x ) e. No <-> ( y +s z ) e. No ) ) : No typesetting found for |- ( x = <. y , z >. -> ( ( +s ` x ) e. No <-> ( y +s z ) e. No ) ) with typecode |-
8 7 ralxp Could not format ( A. x e. ( No X. No ) ( +s ` x ) e. No <-> A. y e. No A. z e. No ( y +s z ) e. No ) : No typesetting found for |- ( A. x e. ( No X. No ) ( +s ` x ) e. No <-> A. y e. No A. z e. No ( y +s z ) e. No ) with typecode |-
9 3 8 mpbir Could not format A. x e. ( No X. No ) ( +s ` x ) e. No : No typesetting found for |- A. x e. ( No X. No ) ( +s ` x ) e. No with typecode |-
10 ffnfv Could not format ( +s : ( No X. No ) --> No <-> ( +s Fn ( No X. No ) /\ A. x e. ( No X. No ) ( +s ` x ) e. No ) ) : No typesetting found for |- ( +s : ( No X. No ) --> No <-> ( +s Fn ( No X. No ) /\ A. x e. ( No X. No ) ( +s ` x ) e. No ) ) with typecode |-
11 1 9 10 mpbir2an Could not format +s : ( No X. No ) --> No : No typesetting found for |- +s : ( No X. No ) --> No with typecode |-