Step |
Hyp |
Ref |
Expression |
1 |
|
fvex |
⊢ ( L ‘ 𝐴 ) ∈ V |
2 |
|
fvex |
⊢ ( L ‘ 𝐵 ) ∈ V |
3 |
1 2
|
ab2rexex |
⊢ { 𝑥 ∣ ∃ 𝑦 ∈ ( L ‘ 𝐴 ) ∃ 𝑧 ∈ ( L ‘ 𝐵 ) 𝑥 = ( ( ( 𝑦 ·s 𝐵 ) +s ( 𝐴 ·s 𝑧 ) ) -s ( 𝑦 ·s 𝑧 ) ) } ∈ V |
4 |
3
|
a1i |
⊢ ( ( 𝐴 ∈ Ons ∧ 𝐵 ∈ Ons ) → { 𝑥 ∣ ∃ 𝑦 ∈ ( L ‘ 𝐴 ) ∃ 𝑧 ∈ ( L ‘ 𝐵 ) 𝑥 = ( ( ( 𝑦 ·s 𝐵 ) +s ( 𝐴 ·s 𝑧 ) ) -s ( 𝑦 ·s 𝑧 ) ) } ∈ V ) |
5 |
|
leftssno |
⊢ ( L ‘ 𝐴 ) ⊆ No |
6 |
5
|
sseli |
⊢ ( 𝑦 ∈ ( L ‘ 𝐴 ) → 𝑦 ∈ No ) |
7 |
6
|
adantr |
⊢ ( ( 𝑦 ∈ ( L ‘ 𝐴 ) ∧ 𝑧 ∈ ( L ‘ 𝐵 ) ) → 𝑦 ∈ No ) |
8 |
7
|
adantl |
⊢ ( ( ( 𝐴 ∈ Ons ∧ 𝐵 ∈ Ons ) ∧ ( 𝑦 ∈ ( L ‘ 𝐴 ) ∧ 𝑧 ∈ ( L ‘ 𝐵 ) ) ) → 𝑦 ∈ No ) |
9 |
|
onsno |
⊢ ( 𝐵 ∈ Ons → 𝐵 ∈ No ) |
10 |
9
|
adantl |
⊢ ( ( 𝐴 ∈ Ons ∧ 𝐵 ∈ Ons ) → 𝐵 ∈ No ) |
11 |
10
|
adantr |
⊢ ( ( ( 𝐴 ∈ Ons ∧ 𝐵 ∈ Ons ) ∧ ( 𝑦 ∈ ( L ‘ 𝐴 ) ∧ 𝑧 ∈ ( L ‘ 𝐵 ) ) ) → 𝐵 ∈ No ) |
12 |
8 11
|
mulscld |
⊢ ( ( ( 𝐴 ∈ Ons ∧ 𝐵 ∈ Ons ) ∧ ( 𝑦 ∈ ( L ‘ 𝐴 ) ∧ 𝑧 ∈ ( L ‘ 𝐵 ) ) ) → ( 𝑦 ·s 𝐵 ) ∈ No ) |
13 |
|
onsno |
⊢ ( 𝐴 ∈ Ons → 𝐴 ∈ No ) |
14 |
13
|
adantr |
⊢ ( ( 𝐴 ∈ Ons ∧ 𝐵 ∈ Ons ) → 𝐴 ∈ No ) |
15 |
14
|
adantr |
⊢ ( ( ( 𝐴 ∈ Ons ∧ 𝐵 ∈ Ons ) ∧ ( 𝑦 ∈ ( L ‘ 𝐴 ) ∧ 𝑧 ∈ ( L ‘ 𝐵 ) ) ) → 𝐴 ∈ No ) |
16 |
|
leftssno |
⊢ ( L ‘ 𝐵 ) ⊆ No |
17 |
16
|
sseli |
⊢ ( 𝑧 ∈ ( L ‘ 𝐵 ) → 𝑧 ∈ No ) |
18 |
17
|
adantl |
⊢ ( ( 𝑦 ∈ ( L ‘ 𝐴 ) ∧ 𝑧 ∈ ( L ‘ 𝐵 ) ) → 𝑧 ∈ No ) |
19 |
18
|
adantl |
⊢ ( ( ( 𝐴 ∈ Ons ∧ 𝐵 ∈ Ons ) ∧ ( 𝑦 ∈ ( L ‘ 𝐴 ) ∧ 𝑧 ∈ ( L ‘ 𝐵 ) ) ) → 𝑧 ∈ No ) |
20 |
15 19
|
mulscld |
⊢ ( ( ( 𝐴 ∈ Ons ∧ 𝐵 ∈ Ons ) ∧ ( 𝑦 ∈ ( L ‘ 𝐴 ) ∧ 𝑧 ∈ ( L ‘ 𝐵 ) ) ) → ( 𝐴 ·s 𝑧 ) ∈ No ) |
21 |
12 20
|
addscld |
⊢ ( ( ( 𝐴 ∈ Ons ∧ 𝐵 ∈ Ons ) ∧ ( 𝑦 ∈ ( L ‘ 𝐴 ) ∧ 𝑧 ∈ ( L ‘ 𝐵 ) ) ) → ( ( 𝑦 ·s 𝐵 ) +s ( 𝐴 ·s 𝑧 ) ) ∈ No ) |
22 |
8 19
|
mulscld |
⊢ ( ( ( 𝐴 ∈ Ons ∧ 𝐵 ∈ Ons ) ∧ ( 𝑦 ∈ ( L ‘ 𝐴 ) ∧ 𝑧 ∈ ( L ‘ 𝐵 ) ) ) → ( 𝑦 ·s 𝑧 ) ∈ No ) |
23 |
21 22
|
subscld |
⊢ ( ( ( 𝐴 ∈ Ons ∧ 𝐵 ∈ Ons ) ∧ ( 𝑦 ∈ ( L ‘ 𝐴 ) ∧ 𝑧 ∈ ( L ‘ 𝐵 ) ) ) → ( ( ( 𝑦 ·s 𝐵 ) +s ( 𝐴 ·s 𝑧 ) ) -s ( 𝑦 ·s 𝑧 ) ) ∈ No ) |
24 |
|
eleq1 |
⊢ ( 𝑥 = ( ( ( 𝑦 ·s 𝐵 ) +s ( 𝐴 ·s 𝑧 ) ) -s ( 𝑦 ·s 𝑧 ) ) → ( 𝑥 ∈ No ↔ ( ( ( 𝑦 ·s 𝐵 ) +s ( 𝐴 ·s 𝑧 ) ) -s ( 𝑦 ·s 𝑧 ) ) ∈ No ) ) |
25 |
23 24
|
syl5ibrcom |
⊢ ( ( ( 𝐴 ∈ Ons ∧ 𝐵 ∈ Ons ) ∧ ( 𝑦 ∈ ( L ‘ 𝐴 ) ∧ 𝑧 ∈ ( L ‘ 𝐵 ) ) ) → ( 𝑥 = ( ( ( 𝑦 ·s 𝐵 ) +s ( 𝐴 ·s 𝑧 ) ) -s ( 𝑦 ·s 𝑧 ) ) → 𝑥 ∈ No ) ) |
26 |
25
|
rexlimdvva |
⊢ ( ( 𝐴 ∈ Ons ∧ 𝐵 ∈ Ons ) → ( ∃ 𝑦 ∈ ( L ‘ 𝐴 ) ∃ 𝑧 ∈ ( L ‘ 𝐵 ) 𝑥 = ( ( ( 𝑦 ·s 𝐵 ) +s ( 𝐴 ·s 𝑧 ) ) -s ( 𝑦 ·s 𝑧 ) ) → 𝑥 ∈ No ) ) |
27 |
26
|
abssdv |
⊢ ( ( 𝐴 ∈ Ons ∧ 𝐵 ∈ Ons ) → { 𝑥 ∣ ∃ 𝑦 ∈ ( L ‘ 𝐴 ) ∃ 𝑧 ∈ ( L ‘ 𝐵 ) 𝑥 = ( ( ( 𝑦 ·s 𝐵 ) +s ( 𝐴 ·s 𝑧 ) ) -s ( 𝑦 ·s 𝑧 ) ) } ⊆ No ) |
28 |
1
|
elpw |
⊢ ( ( L ‘ 𝐴 ) ∈ 𝒫 No ↔ ( L ‘ 𝐴 ) ⊆ No ) |
29 |
5 28
|
mpbir |
⊢ ( L ‘ 𝐴 ) ∈ 𝒫 No |
30 |
|
nulssgt |
⊢ ( ( L ‘ 𝐴 ) ∈ 𝒫 No → ( L ‘ 𝐴 ) <<s ∅ ) |
31 |
29 30
|
mp1i |
⊢ ( ( 𝐴 ∈ Ons ∧ 𝐵 ∈ Ons ) → ( L ‘ 𝐴 ) <<s ∅ ) |
32 |
2
|
elpw |
⊢ ( ( L ‘ 𝐵 ) ∈ 𝒫 No ↔ ( L ‘ 𝐵 ) ⊆ No ) |
33 |
16 32
|
mpbir |
⊢ ( L ‘ 𝐵 ) ∈ 𝒫 No |
34 |
|
nulssgt |
⊢ ( ( L ‘ 𝐵 ) ∈ 𝒫 No → ( L ‘ 𝐵 ) <<s ∅ ) |
35 |
33 34
|
mp1i |
⊢ ( ( 𝐴 ∈ Ons ∧ 𝐵 ∈ Ons ) → ( L ‘ 𝐵 ) <<s ∅ ) |
36 |
|
onscutleft |
⊢ ( 𝐴 ∈ Ons → 𝐴 = ( ( L ‘ 𝐴 ) |s ∅ ) ) |
37 |
36
|
adantr |
⊢ ( ( 𝐴 ∈ Ons ∧ 𝐵 ∈ Ons ) → 𝐴 = ( ( L ‘ 𝐴 ) |s ∅ ) ) |
38 |
|
onscutleft |
⊢ ( 𝐵 ∈ Ons → 𝐵 = ( ( L ‘ 𝐵 ) |s ∅ ) ) |
39 |
38
|
adantl |
⊢ ( ( 𝐴 ∈ Ons ∧ 𝐵 ∈ Ons ) → 𝐵 = ( ( L ‘ 𝐵 ) |s ∅ ) ) |
40 |
31 35 37 39
|
mulsunif |
⊢ ( ( 𝐴 ∈ Ons ∧ 𝐵 ∈ Ons ) → ( 𝐴 ·s 𝐵 ) = ( ( { 𝑥 ∣ ∃ 𝑦 ∈ ( L ‘ 𝐴 ) ∃ 𝑧 ∈ ( L ‘ 𝐵 ) 𝑥 = ( ( ( 𝑦 ·s 𝐵 ) +s ( 𝐴 ·s 𝑧 ) ) -s ( 𝑦 ·s 𝑧 ) ) } ∪ { 𝑥 ∣ ∃ 𝑦 ∈ ∅ ∃ 𝑧 ∈ ∅ 𝑥 = ( ( ( 𝑦 ·s 𝐵 ) +s ( 𝐴 ·s 𝑧 ) ) -s ( 𝑦 ·s 𝑧 ) ) } ) |s ( { 𝑥 ∣ ∃ 𝑦 ∈ ( L ‘ 𝐴 ) ∃ 𝑧 ∈ ∅ 𝑥 = ( ( ( 𝑦 ·s 𝐵 ) +s ( 𝐴 ·s 𝑧 ) ) -s ( 𝑦 ·s 𝑧 ) ) } ∪ { 𝑥 ∣ ∃ 𝑦 ∈ ∅ ∃ 𝑧 ∈ ( L ‘ 𝐵 ) 𝑥 = ( ( ( 𝑦 ·s 𝐵 ) +s ( 𝐴 ·s 𝑧 ) ) -s ( 𝑦 ·s 𝑧 ) ) } ) ) ) |
41 |
|
rex0 |
⊢ ¬ ∃ 𝑦 ∈ ∅ ∃ 𝑧 ∈ ∅ 𝑥 = ( ( ( 𝑦 ·s 𝐵 ) +s ( 𝐴 ·s 𝑧 ) ) -s ( 𝑦 ·s 𝑧 ) ) |
42 |
41
|
abf |
⊢ { 𝑥 ∣ ∃ 𝑦 ∈ ∅ ∃ 𝑧 ∈ ∅ 𝑥 = ( ( ( 𝑦 ·s 𝐵 ) +s ( 𝐴 ·s 𝑧 ) ) -s ( 𝑦 ·s 𝑧 ) ) } = ∅ |
43 |
42
|
uneq2i |
⊢ ( { 𝑥 ∣ ∃ 𝑦 ∈ ( L ‘ 𝐴 ) ∃ 𝑧 ∈ ( L ‘ 𝐵 ) 𝑥 = ( ( ( 𝑦 ·s 𝐵 ) +s ( 𝐴 ·s 𝑧 ) ) -s ( 𝑦 ·s 𝑧 ) ) } ∪ { 𝑥 ∣ ∃ 𝑦 ∈ ∅ ∃ 𝑧 ∈ ∅ 𝑥 = ( ( ( 𝑦 ·s 𝐵 ) +s ( 𝐴 ·s 𝑧 ) ) -s ( 𝑦 ·s 𝑧 ) ) } ) = ( { 𝑥 ∣ ∃ 𝑦 ∈ ( L ‘ 𝐴 ) ∃ 𝑧 ∈ ( L ‘ 𝐵 ) 𝑥 = ( ( ( 𝑦 ·s 𝐵 ) +s ( 𝐴 ·s 𝑧 ) ) -s ( 𝑦 ·s 𝑧 ) ) } ∪ ∅ ) |
44 |
|
un0 |
⊢ ( { 𝑥 ∣ ∃ 𝑦 ∈ ( L ‘ 𝐴 ) ∃ 𝑧 ∈ ( L ‘ 𝐵 ) 𝑥 = ( ( ( 𝑦 ·s 𝐵 ) +s ( 𝐴 ·s 𝑧 ) ) -s ( 𝑦 ·s 𝑧 ) ) } ∪ ∅ ) = { 𝑥 ∣ ∃ 𝑦 ∈ ( L ‘ 𝐴 ) ∃ 𝑧 ∈ ( L ‘ 𝐵 ) 𝑥 = ( ( ( 𝑦 ·s 𝐵 ) +s ( 𝐴 ·s 𝑧 ) ) -s ( 𝑦 ·s 𝑧 ) ) } |
45 |
43 44
|
eqtri |
⊢ ( { 𝑥 ∣ ∃ 𝑦 ∈ ( L ‘ 𝐴 ) ∃ 𝑧 ∈ ( L ‘ 𝐵 ) 𝑥 = ( ( ( 𝑦 ·s 𝐵 ) +s ( 𝐴 ·s 𝑧 ) ) -s ( 𝑦 ·s 𝑧 ) ) } ∪ { 𝑥 ∣ ∃ 𝑦 ∈ ∅ ∃ 𝑧 ∈ ∅ 𝑥 = ( ( ( 𝑦 ·s 𝐵 ) +s ( 𝐴 ·s 𝑧 ) ) -s ( 𝑦 ·s 𝑧 ) ) } ) = { 𝑥 ∣ ∃ 𝑦 ∈ ( L ‘ 𝐴 ) ∃ 𝑧 ∈ ( L ‘ 𝐵 ) 𝑥 = ( ( ( 𝑦 ·s 𝐵 ) +s ( 𝐴 ·s 𝑧 ) ) -s ( 𝑦 ·s 𝑧 ) ) } |
46 |
|
rex0 |
⊢ ¬ ∃ 𝑧 ∈ ∅ 𝑥 = ( ( ( 𝑦 ·s 𝐵 ) +s ( 𝐴 ·s 𝑧 ) ) -s ( 𝑦 ·s 𝑧 ) ) |
47 |
46
|
a1i |
⊢ ( 𝑦 ∈ ( L ‘ 𝐴 ) → ¬ ∃ 𝑧 ∈ ∅ 𝑥 = ( ( ( 𝑦 ·s 𝐵 ) +s ( 𝐴 ·s 𝑧 ) ) -s ( 𝑦 ·s 𝑧 ) ) ) |
48 |
47
|
nrex |
⊢ ¬ ∃ 𝑦 ∈ ( L ‘ 𝐴 ) ∃ 𝑧 ∈ ∅ 𝑥 = ( ( ( 𝑦 ·s 𝐵 ) +s ( 𝐴 ·s 𝑧 ) ) -s ( 𝑦 ·s 𝑧 ) ) |
49 |
48
|
abf |
⊢ { 𝑥 ∣ ∃ 𝑦 ∈ ( L ‘ 𝐴 ) ∃ 𝑧 ∈ ∅ 𝑥 = ( ( ( 𝑦 ·s 𝐵 ) +s ( 𝐴 ·s 𝑧 ) ) -s ( 𝑦 ·s 𝑧 ) ) } = ∅ |
50 |
|
rex0 |
⊢ ¬ ∃ 𝑦 ∈ ∅ ∃ 𝑧 ∈ ( L ‘ 𝐵 ) 𝑥 = ( ( ( 𝑦 ·s 𝐵 ) +s ( 𝐴 ·s 𝑧 ) ) -s ( 𝑦 ·s 𝑧 ) ) |
51 |
50
|
abf |
⊢ { 𝑥 ∣ ∃ 𝑦 ∈ ∅ ∃ 𝑧 ∈ ( L ‘ 𝐵 ) 𝑥 = ( ( ( 𝑦 ·s 𝐵 ) +s ( 𝐴 ·s 𝑧 ) ) -s ( 𝑦 ·s 𝑧 ) ) } = ∅ |
52 |
49 51
|
uneq12i |
⊢ ( { 𝑥 ∣ ∃ 𝑦 ∈ ( L ‘ 𝐴 ) ∃ 𝑧 ∈ ∅ 𝑥 = ( ( ( 𝑦 ·s 𝐵 ) +s ( 𝐴 ·s 𝑧 ) ) -s ( 𝑦 ·s 𝑧 ) ) } ∪ { 𝑥 ∣ ∃ 𝑦 ∈ ∅ ∃ 𝑧 ∈ ( L ‘ 𝐵 ) 𝑥 = ( ( ( 𝑦 ·s 𝐵 ) +s ( 𝐴 ·s 𝑧 ) ) -s ( 𝑦 ·s 𝑧 ) ) } ) = ( ∅ ∪ ∅ ) |
53 |
|
un0 |
⊢ ( ∅ ∪ ∅ ) = ∅ |
54 |
52 53
|
eqtri |
⊢ ( { 𝑥 ∣ ∃ 𝑦 ∈ ( L ‘ 𝐴 ) ∃ 𝑧 ∈ ∅ 𝑥 = ( ( ( 𝑦 ·s 𝐵 ) +s ( 𝐴 ·s 𝑧 ) ) -s ( 𝑦 ·s 𝑧 ) ) } ∪ { 𝑥 ∣ ∃ 𝑦 ∈ ∅ ∃ 𝑧 ∈ ( L ‘ 𝐵 ) 𝑥 = ( ( ( 𝑦 ·s 𝐵 ) +s ( 𝐴 ·s 𝑧 ) ) -s ( 𝑦 ·s 𝑧 ) ) } ) = ∅ |
55 |
45 54
|
oveq12i |
⊢ ( ( { 𝑥 ∣ ∃ 𝑦 ∈ ( L ‘ 𝐴 ) ∃ 𝑧 ∈ ( L ‘ 𝐵 ) 𝑥 = ( ( ( 𝑦 ·s 𝐵 ) +s ( 𝐴 ·s 𝑧 ) ) -s ( 𝑦 ·s 𝑧 ) ) } ∪ { 𝑥 ∣ ∃ 𝑦 ∈ ∅ ∃ 𝑧 ∈ ∅ 𝑥 = ( ( ( 𝑦 ·s 𝐵 ) +s ( 𝐴 ·s 𝑧 ) ) -s ( 𝑦 ·s 𝑧 ) ) } ) |s ( { 𝑥 ∣ ∃ 𝑦 ∈ ( L ‘ 𝐴 ) ∃ 𝑧 ∈ ∅ 𝑥 = ( ( ( 𝑦 ·s 𝐵 ) +s ( 𝐴 ·s 𝑧 ) ) -s ( 𝑦 ·s 𝑧 ) ) } ∪ { 𝑥 ∣ ∃ 𝑦 ∈ ∅ ∃ 𝑧 ∈ ( L ‘ 𝐵 ) 𝑥 = ( ( ( 𝑦 ·s 𝐵 ) +s ( 𝐴 ·s 𝑧 ) ) -s ( 𝑦 ·s 𝑧 ) ) } ) ) = ( { 𝑥 ∣ ∃ 𝑦 ∈ ( L ‘ 𝐴 ) ∃ 𝑧 ∈ ( L ‘ 𝐵 ) 𝑥 = ( ( ( 𝑦 ·s 𝐵 ) +s ( 𝐴 ·s 𝑧 ) ) -s ( 𝑦 ·s 𝑧 ) ) } |s ∅ ) |
56 |
40 55
|
eqtrdi |
⊢ ( ( 𝐴 ∈ Ons ∧ 𝐵 ∈ Ons ) → ( 𝐴 ·s 𝐵 ) = ( { 𝑥 ∣ ∃ 𝑦 ∈ ( L ‘ 𝐴 ) ∃ 𝑧 ∈ ( L ‘ 𝐵 ) 𝑥 = ( ( ( 𝑦 ·s 𝐵 ) +s ( 𝐴 ·s 𝑧 ) ) -s ( 𝑦 ·s 𝑧 ) ) } |s ∅ ) ) |
57 |
4 27 56
|
elons2d |
⊢ ( ( 𝐴 ∈ Ons ∧ 𝐵 ∈ Ons ) → ( 𝐴 ·s 𝐵 ) ∈ Ons ) |