Metamath Proof Explorer


Theorem onmulscl

Description: The surreal ordinals are closed under multiplication. (Contributed by Scott Fenton, 22-Aug-2025)

Ref Expression
Assertion onmulscl ( ( 𝐴 ∈ Ons𝐵 ∈ Ons ) → ( 𝐴 ·s 𝐵 ) ∈ Ons )

Proof

Step Hyp Ref Expression
1 fvex ( L ‘ 𝐴 ) ∈ V
2 fvex ( L ‘ 𝐵 ) ∈ V
3 1 2 ab2rexex { 𝑥 ∣ ∃ 𝑦 ∈ ( L ‘ 𝐴 ) ∃ 𝑧 ∈ ( L ‘ 𝐵 ) 𝑥 = ( ( ( 𝑦 ·s 𝐵 ) +s ( 𝐴 ·s 𝑧 ) ) -s ( 𝑦 ·s 𝑧 ) ) } ∈ V
4 3 a1i ( ( 𝐴 ∈ Ons𝐵 ∈ Ons ) → { 𝑥 ∣ ∃ 𝑦 ∈ ( L ‘ 𝐴 ) ∃ 𝑧 ∈ ( L ‘ 𝐵 ) 𝑥 = ( ( ( 𝑦 ·s 𝐵 ) +s ( 𝐴 ·s 𝑧 ) ) -s ( 𝑦 ·s 𝑧 ) ) } ∈ V )
5 leftssno ( L ‘ 𝐴 ) ⊆ No
6 5 sseli ( 𝑦 ∈ ( L ‘ 𝐴 ) → 𝑦 No )
7 6 adantr ( ( 𝑦 ∈ ( L ‘ 𝐴 ) ∧ 𝑧 ∈ ( L ‘ 𝐵 ) ) → 𝑦 No )
8 7 adantl ( ( ( 𝐴 ∈ Ons𝐵 ∈ Ons ) ∧ ( 𝑦 ∈ ( L ‘ 𝐴 ) ∧ 𝑧 ∈ ( L ‘ 𝐵 ) ) ) → 𝑦 No )
9 onsno ( 𝐵 ∈ Ons𝐵 No )
10 9 adantl ( ( 𝐴 ∈ Ons𝐵 ∈ Ons ) → 𝐵 No )
11 10 adantr ( ( ( 𝐴 ∈ Ons𝐵 ∈ Ons ) ∧ ( 𝑦 ∈ ( L ‘ 𝐴 ) ∧ 𝑧 ∈ ( L ‘ 𝐵 ) ) ) → 𝐵 No )
12 8 11 mulscld ( ( ( 𝐴 ∈ Ons𝐵 ∈ Ons ) ∧ ( 𝑦 ∈ ( L ‘ 𝐴 ) ∧ 𝑧 ∈ ( L ‘ 𝐵 ) ) ) → ( 𝑦 ·s 𝐵 ) ∈ No )
13 onsno ( 𝐴 ∈ Ons𝐴 No )
14 13 adantr ( ( 𝐴 ∈ Ons𝐵 ∈ Ons ) → 𝐴 No )
15 14 adantr ( ( ( 𝐴 ∈ Ons𝐵 ∈ Ons ) ∧ ( 𝑦 ∈ ( L ‘ 𝐴 ) ∧ 𝑧 ∈ ( L ‘ 𝐵 ) ) ) → 𝐴 No )
16 leftssno ( L ‘ 𝐵 ) ⊆ No
17 16 sseli ( 𝑧 ∈ ( L ‘ 𝐵 ) → 𝑧 No )
18 17 adantl ( ( 𝑦 ∈ ( L ‘ 𝐴 ) ∧ 𝑧 ∈ ( L ‘ 𝐵 ) ) → 𝑧 No )
19 18 adantl ( ( ( 𝐴 ∈ Ons𝐵 ∈ Ons ) ∧ ( 𝑦 ∈ ( L ‘ 𝐴 ) ∧ 𝑧 ∈ ( L ‘ 𝐵 ) ) ) → 𝑧 No )
20 15 19 mulscld ( ( ( 𝐴 ∈ Ons𝐵 ∈ Ons ) ∧ ( 𝑦 ∈ ( L ‘ 𝐴 ) ∧ 𝑧 ∈ ( L ‘ 𝐵 ) ) ) → ( 𝐴 ·s 𝑧 ) ∈ No )
21 12 20 addscld ( ( ( 𝐴 ∈ Ons𝐵 ∈ Ons ) ∧ ( 𝑦 ∈ ( L ‘ 𝐴 ) ∧ 𝑧 ∈ ( L ‘ 𝐵 ) ) ) → ( ( 𝑦 ·s 𝐵 ) +s ( 𝐴 ·s 𝑧 ) ) ∈ No )
22 8 19 mulscld ( ( ( 𝐴 ∈ Ons𝐵 ∈ Ons ) ∧ ( 𝑦 ∈ ( L ‘ 𝐴 ) ∧ 𝑧 ∈ ( L ‘ 𝐵 ) ) ) → ( 𝑦 ·s 𝑧 ) ∈ No )
23 21 22 subscld ( ( ( 𝐴 ∈ Ons𝐵 ∈ Ons ) ∧ ( 𝑦 ∈ ( L ‘ 𝐴 ) ∧ 𝑧 ∈ ( L ‘ 𝐵 ) ) ) → ( ( ( 𝑦 ·s 𝐵 ) +s ( 𝐴 ·s 𝑧 ) ) -s ( 𝑦 ·s 𝑧 ) ) ∈ No )
24 eleq1 ( 𝑥 = ( ( ( 𝑦 ·s 𝐵 ) +s ( 𝐴 ·s 𝑧 ) ) -s ( 𝑦 ·s 𝑧 ) ) → ( 𝑥 No ↔ ( ( ( 𝑦 ·s 𝐵 ) +s ( 𝐴 ·s 𝑧 ) ) -s ( 𝑦 ·s 𝑧 ) ) ∈ No ) )
25 23 24 syl5ibrcom ( ( ( 𝐴 ∈ Ons𝐵 ∈ Ons ) ∧ ( 𝑦 ∈ ( L ‘ 𝐴 ) ∧ 𝑧 ∈ ( L ‘ 𝐵 ) ) ) → ( 𝑥 = ( ( ( 𝑦 ·s 𝐵 ) +s ( 𝐴 ·s 𝑧 ) ) -s ( 𝑦 ·s 𝑧 ) ) → 𝑥 No ) )
26 25 rexlimdvva ( ( 𝐴 ∈ Ons𝐵 ∈ Ons ) → ( ∃ 𝑦 ∈ ( L ‘ 𝐴 ) ∃ 𝑧 ∈ ( L ‘ 𝐵 ) 𝑥 = ( ( ( 𝑦 ·s 𝐵 ) +s ( 𝐴 ·s 𝑧 ) ) -s ( 𝑦 ·s 𝑧 ) ) → 𝑥 No ) )
27 26 abssdv ( ( 𝐴 ∈ Ons𝐵 ∈ Ons ) → { 𝑥 ∣ ∃ 𝑦 ∈ ( L ‘ 𝐴 ) ∃ 𝑧 ∈ ( L ‘ 𝐵 ) 𝑥 = ( ( ( 𝑦 ·s 𝐵 ) +s ( 𝐴 ·s 𝑧 ) ) -s ( 𝑦 ·s 𝑧 ) ) } ⊆ No )
28 1 elpw ( ( L ‘ 𝐴 ) ∈ 𝒫 No ↔ ( L ‘ 𝐴 ) ⊆ No )
29 5 28 mpbir ( L ‘ 𝐴 ) ∈ 𝒫 No
30 nulssgt ( ( L ‘ 𝐴 ) ∈ 𝒫 No → ( L ‘ 𝐴 ) <<s ∅ )
31 29 30 mp1i ( ( 𝐴 ∈ Ons𝐵 ∈ Ons ) → ( L ‘ 𝐴 ) <<s ∅ )
32 2 elpw ( ( L ‘ 𝐵 ) ∈ 𝒫 No ↔ ( L ‘ 𝐵 ) ⊆ No )
33 16 32 mpbir ( L ‘ 𝐵 ) ∈ 𝒫 No
34 nulssgt ( ( L ‘ 𝐵 ) ∈ 𝒫 No → ( L ‘ 𝐵 ) <<s ∅ )
35 33 34 mp1i ( ( 𝐴 ∈ Ons𝐵 ∈ Ons ) → ( L ‘ 𝐵 ) <<s ∅ )
36 onscutleft ( 𝐴 ∈ Ons𝐴 = ( ( L ‘ 𝐴 ) |s ∅ ) )
37 36 adantr ( ( 𝐴 ∈ Ons𝐵 ∈ Ons ) → 𝐴 = ( ( L ‘ 𝐴 ) |s ∅ ) )
38 onscutleft ( 𝐵 ∈ Ons𝐵 = ( ( L ‘ 𝐵 ) |s ∅ ) )
39 38 adantl ( ( 𝐴 ∈ Ons𝐵 ∈ Ons ) → 𝐵 = ( ( L ‘ 𝐵 ) |s ∅ ) )
40 31 35 37 39 mulsunif ( ( 𝐴 ∈ Ons𝐵 ∈ Ons ) → ( 𝐴 ·s 𝐵 ) = ( ( { 𝑥 ∣ ∃ 𝑦 ∈ ( L ‘ 𝐴 ) ∃ 𝑧 ∈ ( L ‘ 𝐵 ) 𝑥 = ( ( ( 𝑦 ·s 𝐵 ) +s ( 𝐴 ·s 𝑧 ) ) -s ( 𝑦 ·s 𝑧 ) ) } ∪ { 𝑥 ∣ ∃ 𝑦 ∈ ∅ ∃ 𝑧 ∈ ∅ 𝑥 = ( ( ( 𝑦 ·s 𝐵 ) +s ( 𝐴 ·s 𝑧 ) ) -s ( 𝑦 ·s 𝑧 ) ) } ) |s ( { 𝑥 ∣ ∃ 𝑦 ∈ ( L ‘ 𝐴 ) ∃ 𝑧 ∈ ∅ 𝑥 = ( ( ( 𝑦 ·s 𝐵 ) +s ( 𝐴 ·s 𝑧 ) ) -s ( 𝑦 ·s 𝑧 ) ) } ∪ { 𝑥 ∣ ∃ 𝑦 ∈ ∅ ∃ 𝑧 ∈ ( L ‘ 𝐵 ) 𝑥 = ( ( ( 𝑦 ·s 𝐵 ) +s ( 𝐴 ·s 𝑧 ) ) -s ( 𝑦 ·s 𝑧 ) ) } ) ) )
41 rex0 ¬ ∃ 𝑦 ∈ ∅ ∃ 𝑧 ∈ ∅ 𝑥 = ( ( ( 𝑦 ·s 𝐵 ) +s ( 𝐴 ·s 𝑧 ) ) -s ( 𝑦 ·s 𝑧 ) )
42 41 abf { 𝑥 ∣ ∃ 𝑦 ∈ ∅ ∃ 𝑧 ∈ ∅ 𝑥 = ( ( ( 𝑦 ·s 𝐵 ) +s ( 𝐴 ·s 𝑧 ) ) -s ( 𝑦 ·s 𝑧 ) ) } = ∅
43 42 uneq2i ( { 𝑥 ∣ ∃ 𝑦 ∈ ( L ‘ 𝐴 ) ∃ 𝑧 ∈ ( L ‘ 𝐵 ) 𝑥 = ( ( ( 𝑦 ·s 𝐵 ) +s ( 𝐴 ·s 𝑧 ) ) -s ( 𝑦 ·s 𝑧 ) ) } ∪ { 𝑥 ∣ ∃ 𝑦 ∈ ∅ ∃ 𝑧 ∈ ∅ 𝑥 = ( ( ( 𝑦 ·s 𝐵 ) +s ( 𝐴 ·s 𝑧 ) ) -s ( 𝑦 ·s 𝑧 ) ) } ) = ( { 𝑥 ∣ ∃ 𝑦 ∈ ( L ‘ 𝐴 ) ∃ 𝑧 ∈ ( L ‘ 𝐵 ) 𝑥 = ( ( ( 𝑦 ·s 𝐵 ) +s ( 𝐴 ·s 𝑧 ) ) -s ( 𝑦 ·s 𝑧 ) ) } ∪ ∅ )
44 un0 ( { 𝑥 ∣ ∃ 𝑦 ∈ ( L ‘ 𝐴 ) ∃ 𝑧 ∈ ( L ‘ 𝐵 ) 𝑥 = ( ( ( 𝑦 ·s 𝐵 ) +s ( 𝐴 ·s 𝑧 ) ) -s ( 𝑦 ·s 𝑧 ) ) } ∪ ∅ ) = { 𝑥 ∣ ∃ 𝑦 ∈ ( L ‘ 𝐴 ) ∃ 𝑧 ∈ ( L ‘ 𝐵 ) 𝑥 = ( ( ( 𝑦 ·s 𝐵 ) +s ( 𝐴 ·s 𝑧 ) ) -s ( 𝑦 ·s 𝑧 ) ) }
45 43 44 eqtri ( { 𝑥 ∣ ∃ 𝑦 ∈ ( L ‘ 𝐴 ) ∃ 𝑧 ∈ ( L ‘ 𝐵 ) 𝑥 = ( ( ( 𝑦 ·s 𝐵 ) +s ( 𝐴 ·s 𝑧 ) ) -s ( 𝑦 ·s 𝑧 ) ) } ∪ { 𝑥 ∣ ∃ 𝑦 ∈ ∅ ∃ 𝑧 ∈ ∅ 𝑥 = ( ( ( 𝑦 ·s 𝐵 ) +s ( 𝐴 ·s 𝑧 ) ) -s ( 𝑦 ·s 𝑧 ) ) } ) = { 𝑥 ∣ ∃ 𝑦 ∈ ( L ‘ 𝐴 ) ∃ 𝑧 ∈ ( L ‘ 𝐵 ) 𝑥 = ( ( ( 𝑦 ·s 𝐵 ) +s ( 𝐴 ·s 𝑧 ) ) -s ( 𝑦 ·s 𝑧 ) ) }
46 rex0 ¬ ∃ 𝑧 ∈ ∅ 𝑥 = ( ( ( 𝑦 ·s 𝐵 ) +s ( 𝐴 ·s 𝑧 ) ) -s ( 𝑦 ·s 𝑧 ) )
47 46 a1i ( 𝑦 ∈ ( L ‘ 𝐴 ) → ¬ ∃ 𝑧 ∈ ∅ 𝑥 = ( ( ( 𝑦 ·s 𝐵 ) +s ( 𝐴 ·s 𝑧 ) ) -s ( 𝑦 ·s 𝑧 ) ) )
48 47 nrex ¬ ∃ 𝑦 ∈ ( L ‘ 𝐴 ) ∃ 𝑧 ∈ ∅ 𝑥 = ( ( ( 𝑦 ·s 𝐵 ) +s ( 𝐴 ·s 𝑧 ) ) -s ( 𝑦 ·s 𝑧 ) )
49 48 abf { 𝑥 ∣ ∃ 𝑦 ∈ ( L ‘ 𝐴 ) ∃ 𝑧 ∈ ∅ 𝑥 = ( ( ( 𝑦 ·s 𝐵 ) +s ( 𝐴 ·s 𝑧 ) ) -s ( 𝑦 ·s 𝑧 ) ) } = ∅
50 rex0 ¬ ∃ 𝑦 ∈ ∅ ∃ 𝑧 ∈ ( L ‘ 𝐵 ) 𝑥 = ( ( ( 𝑦 ·s 𝐵 ) +s ( 𝐴 ·s 𝑧 ) ) -s ( 𝑦 ·s 𝑧 ) )
51 50 abf { 𝑥 ∣ ∃ 𝑦 ∈ ∅ ∃ 𝑧 ∈ ( L ‘ 𝐵 ) 𝑥 = ( ( ( 𝑦 ·s 𝐵 ) +s ( 𝐴 ·s 𝑧 ) ) -s ( 𝑦 ·s 𝑧 ) ) } = ∅
52 49 51 uneq12i ( { 𝑥 ∣ ∃ 𝑦 ∈ ( L ‘ 𝐴 ) ∃ 𝑧 ∈ ∅ 𝑥 = ( ( ( 𝑦 ·s 𝐵 ) +s ( 𝐴 ·s 𝑧 ) ) -s ( 𝑦 ·s 𝑧 ) ) } ∪ { 𝑥 ∣ ∃ 𝑦 ∈ ∅ ∃ 𝑧 ∈ ( L ‘ 𝐵 ) 𝑥 = ( ( ( 𝑦 ·s 𝐵 ) +s ( 𝐴 ·s 𝑧 ) ) -s ( 𝑦 ·s 𝑧 ) ) } ) = ( ∅ ∪ ∅ )
53 un0 ( ∅ ∪ ∅ ) = ∅
54 52 53 eqtri ( { 𝑥 ∣ ∃ 𝑦 ∈ ( L ‘ 𝐴 ) ∃ 𝑧 ∈ ∅ 𝑥 = ( ( ( 𝑦 ·s 𝐵 ) +s ( 𝐴 ·s 𝑧 ) ) -s ( 𝑦 ·s 𝑧 ) ) } ∪ { 𝑥 ∣ ∃ 𝑦 ∈ ∅ ∃ 𝑧 ∈ ( L ‘ 𝐵 ) 𝑥 = ( ( ( 𝑦 ·s 𝐵 ) +s ( 𝐴 ·s 𝑧 ) ) -s ( 𝑦 ·s 𝑧 ) ) } ) = ∅
55 45 54 oveq12i ( ( { 𝑥 ∣ ∃ 𝑦 ∈ ( L ‘ 𝐴 ) ∃ 𝑧 ∈ ( L ‘ 𝐵 ) 𝑥 = ( ( ( 𝑦 ·s 𝐵 ) +s ( 𝐴 ·s 𝑧 ) ) -s ( 𝑦 ·s 𝑧 ) ) } ∪ { 𝑥 ∣ ∃ 𝑦 ∈ ∅ ∃ 𝑧 ∈ ∅ 𝑥 = ( ( ( 𝑦 ·s 𝐵 ) +s ( 𝐴 ·s 𝑧 ) ) -s ( 𝑦 ·s 𝑧 ) ) } ) |s ( { 𝑥 ∣ ∃ 𝑦 ∈ ( L ‘ 𝐴 ) ∃ 𝑧 ∈ ∅ 𝑥 = ( ( ( 𝑦 ·s 𝐵 ) +s ( 𝐴 ·s 𝑧 ) ) -s ( 𝑦 ·s 𝑧 ) ) } ∪ { 𝑥 ∣ ∃ 𝑦 ∈ ∅ ∃ 𝑧 ∈ ( L ‘ 𝐵 ) 𝑥 = ( ( ( 𝑦 ·s 𝐵 ) +s ( 𝐴 ·s 𝑧 ) ) -s ( 𝑦 ·s 𝑧 ) ) } ) ) = ( { 𝑥 ∣ ∃ 𝑦 ∈ ( L ‘ 𝐴 ) ∃ 𝑧 ∈ ( L ‘ 𝐵 ) 𝑥 = ( ( ( 𝑦 ·s 𝐵 ) +s ( 𝐴 ·s 𝑧 ) ) -s ( 𝑦 ·s 𝑧 ) ) } |s ∅ )
56 40 55 eqtrdi ( ( 𝐴 ∈ Ons𝐵 ∈ Ons ) → ( 𝐴 ·s 𝐵 ) = ( { 𝑥 ∣ ∃ 𝑦 ∈ ( L ‘ 𝐴 ) ∃ 𝑧 ∈ ( L ‘ 𝐵 ) 𝑥 = ( ( ( 𝑦 ·s 𝐵 ) +s ( 𝐴 ·s 𝑧 ) ) -s ( 𝑦 ·s 𝑧 ) ) } |s ∅ ) )
57 4 27 56 elons2d ( ( 𝐴 ∈ Ons𝐵 ∈ Ons ) → ( 𝐴 ·s 𝐵 ) ∈ Ons )